Previous |  Up |  Next


MSC: 65D05, 65N30
Full entry | Fulltext not available (moving wall 24 months)      Feedback
Lagrange interpolation; Babuška-Aziz's technique; difference quotients
We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz.
[1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces. Pure and Applied Mathematics 140 Academic Press, New York (2003). MR 2424078 | Zbl 1098.46001
[2] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications. Advances in Numerical Mathematics Teubner, Stuttgart (1999). MR 1716824 | Zbl 0934.65121
[3] Atkinson, K. E.: An Introduction to Numerical Analysis. John Wiley & Sons, New York (1989). MR 1007135 | Zbl 0718.65001
[4] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method. SIAM J. Numer. Anal. 13 (1976), 214-226. DOI 10.1137/0713021 | MR 0455462 | Zbl 0324.65046
[5] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds. Numer. Math. 25 (1976), 215-229. DOI 10.1007/BF01399411 | MR 0458000 | Zbl 0304.65076
[6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods. Texts in Applied Mathematics 15 Springer, New York (2008). DOI 10.1007/978-0-387-75934-0_7 | MR 2373954 | Zbl 1135.65042
[7] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Universitext Springer, New York (2011). MR 2759829 | Zbl 1220.46002
[8] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Repr., unabridged republ. of the 1978 orig. Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). MR 1930132
[9] Durán, R. G.: Error estimates for 3-d narrow finite elements. Math. Comput. 68 (1999), 187-199. DOI 10.1090/S0025-5718-99-00994-1 | MR 1489970
[10] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements. Applied Mathematical Sciences 159 Springer, New York (2004). DOI 10.1007/978-1-4757-4355-5 | MR 2050138 | Zbl 1059.65103
[11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés. Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1 10 French (1976), 43-60. MR 0455282
[12] Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition. Japan J. Ind. Appl. Math. 31 (2014), 193-210. DOI 10.1007/s13160-013-0128-y | MR 3167084 | Zbl 1295.65011
[13] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles. Appl. Math., Praha 60 (2015), 485-499. MR 3396477
[14] Křížek, M.: On semiregular families of triangulations and linear interpolation. Appl. Math., Praha 36 (1991), 223-232. MR 1109126 | Zbl 0728.41003
[15] Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer. Anal. 29 (1992), 513-520. DOI 10.1137/0729031 | MR 1154279 | Zbl 0755.41003
[16] Kufner, A., John, O., Fučík, S.: Function Spaces. Monographs and Textsbooks on Mechanics of Solids and Fluids Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977). MR 0482102
[17] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Translated from Russian original. Translations of Mathematical Monographs 23 AMS, Providence (1968). MR 0241822
[18] Shenk, N. A.: Uniform error estimates for certain narrow Lagrange finite elements. Math. Comput. 63 (1994), 105-119. DOI 10.1090/S0025-5718-1994-1226816-5 | MR 1226816 | Zbl 0807.65003
[19] Yamamoto, T.: Introduction to Numerical Analysis. Japanese Saiensu-sha (2003).
Partner of
EuDML logo