Previous |  Up |  Next

Article

Title: Extending Babuška-Aziz's theorem to higher-order Lagrange interpolation (English)
Author: Kobayashi, Kenta
Author: Tsuchiya, Takuya
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 2
Year: 2016
Pages: 121-133
Summary lang: English
.
Category: math
.
Summary: We consider the error analysis of Lagrange interpolation on triangles and tetrahedrons. For Lagrange interpolation of order one, Babuška and Aziz showed that squeezing a right isosceles triangle perpendicularly does not deteriorate the optimal approximation order. We extend their technique and result to higher-order Lagrange interpolation on both triangles and tetrahedrons. To this end, we make use of difference quotients of functions with two or three variables. Then, the error estimates on squeezed triangles and tetrahedrons are proved by a method that is a straightforward extension of the original one given by Babuška-Aziz. (English)
Keyword: Lagrange interpolation
Keyword: Babuška-Aziz's technique
Keyword: difference quotients
MSC: 65D05
MSC: 65N30
idZBL: Zbl 06562150
idMR: MR3470770
DOI: 10.1007/s10492-016-0125-y
.
Date available: 2016-03-17T19:28:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144840
.
Reference: [1] Adams, R. A., Fournier, J. J. F.: Sobolev Spaces.Pure and Applied Mathematics 140 Academic Press, New York (2003). Zbl 1098.46001, MR 2424078
Reference: [2] Apel, T.: Anisotropic Finite Elements: Local Estimates and Applications.Advances in Numerical Mathematics Teubner, Stuttgart (1999). Zbl 0934.65121, MR 1716824
Reference: [3] Atkinson, K. E.: An Introduction to Numerical Analysis.John Wiley & Sons, New York (1989). Zbl 0718.65001, MR 1007135
Reference: [4] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [5] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1976), 215-229. Zbl 0304.65076, MR 0458000, 10.1007/BF01399411
Reference: [6] Brenner, S. C., Scott, L. R.: The Mathematical Theory of Finite Element Methods.Texts in Applied Mathematics 15 Springer, New York (2008). Zbl 1135.65042, MR 2373954, 10.1007/978-0-387-75934-0_7
Reference: [7] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext Springer, New York (2011). Zbl 1220.46002, MR 2759829
Reference: [8] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems. Repr., unabridged republ. of the 1978 orig.Classics in Applied Mathematics 40 SIAM, Philadelphia (2002). MR 1930132
Reference: [9] Durán, R. G.: Error estimates for 3-d narrow finite elements.Math. Comput. 68 (1999), 187-199. MR 1489970, 10.1090/S0025-5718-99-00994-1
Reference: [10] Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements.Applied Mathematical Sciences 159 Springer, New York (2004). Zbl 1059.65103, MR 2050138, 10.1007/978-1-4757-4355-5
Reference: [11] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. 10, Analyse numer., R-1 10 French (1976), 43-60. MR 0455282
Reference: [12] Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition.Japan J. Ind. Appl. Math. 31 (2014), 193-210. Zbl 1295.65011, MR 3167084, 10.1007/s13160-013-0128-y
Reference: [13] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles.Appl. Math., Praha 60 (2015), 485-499. Zbl 1363.65015, MR 3396477, 10.1007/s10492-015-0108-4
Reference: [14] Křížek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126
Reference: [15] Křížek, M.: On the maximum angle condition for linear tetrahedral elements.SIAM J. Numer. Anal. 29 (1992), 513-520. Zbl 0755.41003, MR 1154279, 10.1137/0729031
Reference: [16] Kufner, A., John, O., Fučík, S.: Function Spaces.Monographs and Textsbooks on Mechanics of Solids and Fluids Noordhoff International Publishing, Leyden; Publishing House of the Czechoslovak Academy of Sciences, Prague (1977). MR 0482102
Reference: [17] Ladyzhenskaya, O. A., Solonnikov, V. A., Ural'tseva, N. N.: Linear and Quasilinear Equations of Parabolic Type. Translated from Russian original.Translations of Mathematical Monographs 23 AMS, Providence (1968). MR 0241822, 10.1090/mmono/023
Reference: [18] Shenk, N. A.: Uniform error estimates for certain narrow Lagrange finite elements.Math. Comput. 63 (1994), 105-119. Zbl 0807.65003, MR 1226816, 10.1090/S0025-5718-1994-1226816-5
Reference: [19] Yamamoto, T.: Introduction to Numerical Analysis.Japanese Saiensu-sha (2003).
.

Files

Files Size Format View
AplMat_61-2016-2_1.pdf 294.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo