Previous |  Up |  Next

Article

Title: New a posteriori $L^{\infty }(L^2) $ and $L^2(L^2)$-error estimates of mixed finite element methods for general nonlinear parabolic optimal control problems (English)
Author: Lu, Zuliang
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 2
Year: 2016
Pages: 135-163
Summary lang: English
.
Category: math
.
Summary: We study new a posteriori error estimates of the mixed finite element methods for general optimal control problems governed by nonlinear parabolic equations. The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions. We derive a posteriori error estimates in $L^{\infty }(J;L^2(\Omega )) $-norm and $L^2(J;L^2(\Omega ))$-norm for both the state, the co-state and the control approximation. Such estimates, which seem to be new, are an important step towards developing a reliable adaptive mixed finite element approximation for optimal control problems. Finally, the performance of the posteriori error estimators is assessed by two numerical examples. (English)
Keyword: a posteriori error estimate
Keyword: general optimal control problem
Keyword: nonlinear parabolic equation
Keyword: mixed finite element method
MSC: 49J20
MSC: 65N30
idZBL: Zbl 06562151
idMR: MR3470771
DOI: 10.1007/s10492-016-0126-x
.
Date available: 2016-03-17T19:30:50Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144842
.
Reference: [1] Babuška, I., Strouboulis, T.: The Finite Element Method and Its Reliability.Numerical Mathematics and Scientific Computation The Clarendon Press, Oxford University Press, New York (2001). MR 1857191
Reference: [2] Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods.Springer Series in Computational Mathematics 15 Springer, New York (1991). Zbl 0788.73002, MR 1115205
Reference: [3] Carstensen, C.: A posteriori error estimate for the mixed finite element method.Math. Comput. 66 (1997), 465-476. Zbl 0864.65068, MR 1408371, 10.1090/S0025-5718-97-00837-5
Reference: [4] Chen, Y., Huang, Y., Liu, W., Yan, N.: Error estimates and superconvergence of mixed finite element methods for convex optimal control problems.J. Sci. Comput. 42 (2010), 382-403. Zbl 1203.49042, MR 2585589, 10.1007/s10915-009-9327-8
Reference: [5] Chen, Y., Liu, L., Lu, Z.: A posteriori error estimates of mixed methods for parabolic optimal control problems.Numer. Funct. Anal. Optim. 31 (2010), 1135-1157. Zbl 1219.49025, MR 2738842, 10.1080/01630563.2010.492046
Reference: [6] Chen, Y., Lu, Z.: Error estimates for parabolic optimal control problem by fully discrete mixed finite element methods.Finite Elem. Anal. Des. 46 (2010), 957-965. MR 2678160, 10.1016/j.finel.2010.06.011
Reference: [7] Chen, Y., Lu, Z.: Error estimates of fully discrete mixed finite element methods for semilinear quadratic parabolic optimal control problem.Comput. Methods Appl. Mech. Eng. 199 (2010), 1415-1423. Zbl 1231.65152, MR 2630151, 10.1016/j.cma.2009.11.009
Reference: [8] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [9] Eriksson, K., Johnson, C.: Adaptive finite element methods for parabolic problems. I: A linear model problem.SIAM J. Numer. Anal. 28 (1991), 43-77. Zbl 0732.65093, MR 1083324, 10.1137/0728003
Reference: [10] Hoppe, R. H. W., Iliash, Y., Iyyunni, C., Sweilam, N. H.: A posteriori error estimates for adaptive finite element discretizations of boundary control problems.J. Numer. Math. 14 (2006), 57-82. Zbl 1104.65066, MR 2229819, 10.1163/156939506776382139
Reference: [11] Hou, L. S., Turner, J. C.: Analysis and finite element approximation of an optimal control problem in electrochemistry with current density controls.Numer. Math. 71 (1995), 289-315. Zbl 0827.49002, MR 1347571, 10.1007/s002110050146
Reference: [12] Knowles, G.: Finite element approximation of parabolic time optimal control problems.SIAM J. Control Optimization 20 (1982), 414-427. Zbl 0481.49026, MR 0652217, 10.1137/0320032
Reference: [13] Li, R., Liu, W., Ma, H., Tang, T.: Adaptive finite element approximation for distributed elliptic optimal control problems.SIAM J. Control Optimization 41 (2002), 1321-1349. Zbl 1034.49031, MR 1971952, 10.1137/S0363012901389342
Reference: [14] Lions, J. L.: Optimal Control of Systems Governed by Partial Differential Equations.Die Grundlehren der mathematischen Wissenschaften 170 Springer, Berlin (1971). Zbl 0203.09001, MR 0271512
Reference: [15] Liu, W., Ma, H., Tang, T., Yan, N.: A posteriori error estimates for discontinuous Galerkin time-stepping method for optimal control problems governed by parabolic equations.SIAM J. Numer. Anal. 42 (2004), 1032-1061. Zbl 1085.65054, MR 2113674, 10.1137/S0036142902397090
Reference: [16] Liu, W., Yan, N.: A posteriori error estimates for convex boundary control problems.SIAM J. Numer. Anal. 39 (2001), 73-99. Zbl 0988.49018, MR 1860717, 10.1137/S0036142999352187
Reference: [17] Liu, W., Yan, N.: A posteriori error estimates for distributed convex optimal control problems.Adv. Comput. Math. 15 (2001), 285-309. Zbl 1008.49024, MR 1887737, 10.1023/A:1014239012739
Reference: [18] Liu, W., Yan, N.: A posteriori error estimates for control problems governed by Stokes equations.SIAM J. Numer. Anal. 40 (2002), 1850-1869. Zbl 1028.49025, MR 1950625, 10.1137/S0036142901384009
Reference: [19] Liu, W., Yan, N.: A posteriori error estimates for optimal control problems governed by parabolic equations.Numer. Math. 93 (2003), 497-521. Zbl 1049.65057, MR 1953750, 10.1007/s002110100380
Reference: [20] Lu, Z., Chen, Y.: A posteriori error estimates of triangular mixed finite element methods for semilinear optimal control problems.Adv. Appl. Math. Mech. 1 (2009), 242-256. Zbl 1262.49009, MR 2520864
Reference: [21] R. S. McKnight, W. E. Bosarge, Jr.: The Ritz-Galerkin procedure for parabolic control problems.SIAM J. Control Optim. 11 (1973), 510-524. Zbl 0237.65071, MR 0403754, 10.1137/0311040
Reference: [22] Milner, F. A.: Mixed finite element methods for quasilinear second-order elliptic problems.Math. Comput. 44 (1985), 303-320. Zbl 0567.65079, MR 0777266, 10.1090/S0025-5718-1985-0777266-1
Reference: [23] Scott, L. R., Zhang, S.: Finite element interpolation of nonsmooth functions satisfying boundary conditions.Math. Comput. 54 (1990), 483-493. Zbl 0696.65007, MR 1011446, 10.1090/S0025-5718-1990-1011446-7
Reference: [24] Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems.Springer Series in Computational Mathematics 25 Springer, Berlin (1997). Zbl 0884.65097, MR 1479170
Reference: [25] Tiba, D.: Lectures on the Optimal Control of Elliptic Problems.University of Jyvaskyla Press, Jyvaskyla, Finland (1995).
.

Files

Files Size Format View
AplMat_61-2016-2_2.pdf 532.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo