Previous |  Up |  Next

Article

Title: Existence, blow-up and exponential decay for a nonlinear Love equation associated with Dirichlet conditions (English)
Author: Ngoc, Le Thi Phuong
Author: Long, Nguyen Thanh
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 2
Year: 2016
Pages: 165-196
Summary lang: English
.
Category: math
.
Summary: In this paper we consider a nonlinear Love equation associated with Dirichlet conditions. First, under suitable conditions, the existence of a unique local weak solution is proved. Next, a blow up result for solutions with negative initial energy is also established. Finally, a sufficient condition guaranteeing the global existence and exponential decay of weak solutions is given. The proofs are based on the linearization method, the Galerkin method associated with a priori estimates, weak convergence, compactness techniques and the construction of a suitable Lyapunov functional. To our knowledge, there has been no decay or blow up result for equations of Love waves or Love type waves before. (English)
Keyword: nonlinear Love equation
Keyword: Faedo-Galerkin method
Keyword: local existence
Keyword: blow up
Keyword: exponential decay
MSC: 35L20
MSC: 35L70
MSC: 35Q74
MSC: 37B25
idZBL: Zbl 06562152
idMR: MR3470772
DOI: 10.1007/s10492-016-0127-9
.
Date available: 2016-03-17T19:32:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144843
.
Reference: [1] Albert, J.: On the decay of solutions of the generalized Benjamin-Bona-Mahony equation.J. Math. Anal. Appl. 141 (1989), 527-537. Zbl 0697.35116, MR 1009061, 10.1016/0022-247X(89)90195-9
Reference: [2] Amick, C. J., Bona, J. L., Schonbek, M. E.: Decay of solutions of some nonlinear wave equations.J. Differ. Equations 81 (1989), 1-49. Zbl 0689.35081, MR 1012198, 10.1016/0022-0396(89)90176-9
Reference: [3] Benaissa, A., Messaoudi, S. A.: Exponential decay of solutions of a nonlinearly damped wave equation.NoDEA, Nonlinear Differ. Equ. Appl. 12 (2005), 391-399. Zbl 1102.35071, MR 2199380, 10.1007/s00030-005-0008-5
Reference: [4] Chattopadhyay, A., Gupta, S., Singh, A. K., Sahu, S. A.: Propagation of shear waves in an irregular magnetoelastic monoclinic layer sandwiched between two isotropic half-spaces.International Journal of Engineering, Science and Technology 1 (2009), 228-244. MR 2380170
Reference: [5] Clarkson, P. A.: New similarity reductions and Painlevé analysis for the symmetric regularised long wave and modified Benjamin-Bona-Mahoney equations.J. Phys. A, Math. Gen. 22 (1989), 3821-3848. Zbl 0711.35113, MR 1015235, 10.1088/0305-4470/22/18/020
Reference: [6] Dutta, S.: On the propagation of Love type waves in an infinite cylinder with rigidity and density varying linearly with the radial distance.Pure Appl. Geophys. 98 (1972), 35-39. 10.1007/BF00875578
Reference: [7] Lions, J. L.: Quelques méthodes de résolution des problèmes aux limites nonlinéaires.Dunod; Gauthier-Villars, Paris (1969), French. MR 0259693
Reference: [8] Long, N. T., Ngoc, L. T. P.: On a nonlinear wave equation with boundary conditions of two-point type.J. Math. Anal. Appl. 385 (2012), 1070-1093. Zbl 1228.35151, MR 2834912, 10.1016/j.jmaa.2011.07.034
Reference: [9] Makhankov, V. G.: Dynamics of classical solitons (in non-integrable systems).Phys. Rep. 35 (1978), 1-128. MR 0481361, 10.1016/0370-1573(78)90074-1
Reference: [10] Messaoudi, S. A.: Blow up and global existence in a nonlinear viscoelastic wave equation.Math. Nachr. 260 (2003), 58-66. Zbl 1035.35082, MR 2017703, 10.1002/mana.200310104
Reference: [11] Nakao, M., Ono, K.: Global existence to the Cauchy problem of the semilinear wave equation with a nonlinear dissipation.Funkc. Ekvacioj, Ser. Int. 38 (1995), 417-431. Zbl 0855.35081, MR 1374429
Reference: [12] Ngoc, L. T. P., Duy, N. T., Long, N. T.: A linear recursive scheme associated with the Love equation.Acta Math. Vietnam. 38 (2013), 551-562. Zbl 1310.35174, MR 3129917, 10.1007/s40306-013-0034-z
Reference: [13] Ngoc, L. T. P., Duy, N. T., Long, N. T.: Existence and properties of solutions of a boundary problem for a Love's equation.Bull. Malays. Math. Sci. Soc. (2) 37 (2014), 997-1016. Zbl 1304.35231, MR 3295564
Reference: [14] Ngoc, L. T. P., Duy, N. T., Long, N. T.: On a high-order iterative scheme for a nonlinear Love equation.Appl. Math., Praha 60 (2015), 285-298. Zbl 1363.65180, MR 3419963, 10.1007/s10492-015-0096-4
Reference: [15] Ngoc, L. T. P., Long, N. T.: Existence and exponential decay for a nonlinear wave equation with nonlocal boundary conditions.Commun. Pure Appl. Anal. 12 (2013), 2001-2029. Zbl 1267.35119, MR 3015668, 10.3934/cpaa.2013.12.2001
Reference: [16] Ogino, T., Takeda, S.: Computer simulation and analysis for the spherical and cylindrical ion-acoustic solitons.J. Phys. Soc. Japan 41 (1976), 257-264. 10.1143/JPSJ.41.257
Reference: [17] Paul, M. K.: On propagation of Love-type waves on a spherical model with rigidity and density both varying exponentially with the radial distance.Pure Appl. Geophys. 59 (1964), 33-37. Zbl 0135.23902, 10.1007/BF00880505
Reference: [18] Radochová, V.: Remark to the comparison of solution properties of Love's equation with those of wave equation.Apl. Mat. 23 (1978), 199-207. MR 0492985
Reference: [19] Seyler, C. E., Fenstermacher, D. L.: A symmetric regularized-long-wave equation.Phys. Fluids 27 (1984), 4-7. Zbl 0544.76170, 10.1063/1.864487
Reference: [20] Truong, L. X., Ngoc, L. T. P., Dinh, A. P. N., Long, N. T.: Existence, blow-up and exponential decay estimates for a nonlinear wave equation with boundary conditions of two-point type.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 6933-6949. Zbl 1227.35075, MR 2833683, 10.1016/j.na.2011.07.015
.

Files

Files Size Format View
AplMat_61-2016-2_3.pdf 354.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo