Previous |  Up |  Next

Article

Title: Meromorphic function sharing a small function with a linear differential polynomial (English)
Author: Lahiri, Indrajit
Author: Sarkar, Amit
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 1
Year: 2016
Pages: 1-11
Summary lang: English
.
Category: math
.
Summary: The problem of uniqueness of an entire or a meromorphic function when it shares a value or a small function with its derivative became popular among the researchers after the work of Rubel and Yang (1977). Several authors extended the problem to higher order derivatives. Since a linear differential polynomial is a natural extension of a derivative, in the paper we study the uniqueness of a meromorphic function that shares one small function CM with a linear differential polynomial, and prove the following result: Let $f$ be a nonconstant meromorphic function and $L$ a nonconstant linear differential polynomial generated by $f$. Suppose that $a = a(z)$ ($\not \equiv 0, \infty $) is a small function of $f$. If $f-a$ and $L-a$ share $0$ CM and \[ (k+1)\overline N(r, \infty ; f)+ \overline N(r, 0; f')+ N_{k}(r, 0; f')< \lambda T(r, f')+ S(r, f') \] for some real constant $\lambda \in (0, 1)$, then $ f-a=(1+ {c}/{a})(L-a)$, where $c$ is a constant and $1+{c}/{a} \not \equiv 0$. (English)
Keyword: meromorphic function
Keyword: differential polynomial
Keyword: small function
Keyword: sharing
MSC: 30D35
idZBL: Zbl 06562155
idMR: MR3475134
DOI: 10.21136/MB.2016.1
.
Date available: 2016-03-17T19:39:13Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/144846
.
Reference: [1] Al-Khaladi, A. H. H.: On meromorphic functions that share one small function with their $k$th derivative.Result. Math. 57 (2010), 313-318. Zbl 1198.30032, MR 2651117, 10.1007/s00025-010-0029-1
Reference: [2] Al-Khaladi, A. H. H.: On entire functions which share one small function CM with their $k$th derivative.Result. Math. 47 (2005), 1-5. Zbl 1074.30027, MR 2129572, 10.1007/BF03323007
Reference: [3] Al-Khaladi, A. H. H.: On entire functions which share one small function CM with their first derivative.Kodai Math. J. 27 (2004), 201-205. Zbl 1070.30012, MR 2100917, 10.2996/kmj/1104247345
Reference: [4] Brück, R.: On entire functions which share one value CM with their first derivative.Result. Math. 30 (1996), 21-24. MR 1402421, 10.1007/BF03322176
Reference: [5] Gundersen, G. G.: Meromorphic functions that share finite values with their derivative.J. Math. Anal. Appl. 75 (1980), 441-446. Zbl 0447.30018, MR 0581831, 10.1016/0022-247X(80)90092-X
Reference: [6] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs 14 Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [7] Lahiri, I., Sarkar, A.: Uniqueness of a meromorphic function and its derivative.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 5 (2004), Article No. 20, 9 pages. Zbl 1056.30030, MR 2048496
Reference: [8] Liu, L., Gu, Y.: Uniqueness of meromorphic functions that share one small function with their derivatives.Kodai Math. J. 27 (2004), 272-279. Zbl 1115.30034, MR 2100923, 10.2996/kmj/1104247351
Reference: [9] Mues, E., Steinmetz, N.: Meromorphe Funktionen, die mit ihrer Ableitung Werte teilen.Manuscr. Math. 29 German (1979), 195-206. Zbl 0416.30028, MR 0545041, 10.1007/BF01303627
Reference: [10] Rubel, L. A., Yang, C. C.: Values shared by an entire function and its derivative.Complex Anal., Proc. Conf., Univ. Lexington, 1976 Lect. Notes Math. 599 Springer, Berlin (1977), 101-103 J. D. Buckholtz et al. Zbl 0362.30026, MR 0460640, 10.1007/BFb0096830
Reference: [11] Yang, L.-Z.: Solution of a differential equation and its applications.Kodai Math. J. 22 (1999), 458-464. Zbl 1004.30021, MR 1727305, 10.2996/kmj/1138044097
Reference: [12] Yang, L.-Z.: Entire functions that share finite values with their derivatives.Bull. Aust. Math. Soc. 41 (1990), 337-342. Zbl 0691.30022, MR 1071033, 10.1017/S0004972700018190
Reference: [13] Yu, K.-W.: On entire and meromorphic functions that share small functions with their derivatives.JIPAM, J. Inequal. Pure Appl. Math. (electronic only) 4 (2003), Article No. 21, 7 pages. Zbl 1021.30030, MR 1966001
Reference: [14] Zhang, Q. C.: The uniqueness of meromorphic functions with their derivatives.Kodai Math. J. 21 (1998), 179-184. Zbl 0932.30027, MR 1645603, 10.2996/kmj/1138043871
.

Files

Files Size Format View
MathBohem_141-2016-1_1.pdf 242.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo