Previous |  Up |  Next

Article

Title: Nonlinear differential polynomials sharing a non-zero polynomial with finite weight (English)
Author: Banerjee, Abhijit
Author: AHAMED, Molla Basir
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 1
Year: 2016
Pages: 13-36
Summary lang: English
.
Category: math
.
Summary: In the paper, dealing with a question of Lahiri (1999), we study the uniqueness of meromorphic functions in the case when two certain types of nonlinear differential polynomials, which are the derivatives of some typical linear expression, namely $h^{n}(h-1)^{m}$ ($h=f,g$), share a non-zero polynomial with finite weight. The results obtained in the paper improve, extend, supplement and generalize some recent results due to Sahoo (2013), Li and Gao (2010). In particular, we have shown that under a suitable choice of the sharing non-zero polynomial or when the first derivative is taken under consideration, better conclusions can be obtained. (English)
Keyword: uniqueness
Keyword: meromorphic function
Keyword: nonlinear differential polynomial
MSC: 30D35
idZBL: Zbl 06562156
idMR: MR3475135
DOI: 10.21136/MB.2016.2
.
Date available: 2016-03-17T19:40:59Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/144849
.
Reference: [1] Alzahary, T. C., Yi, H. X.: Weighted value sharing and a question of I. Lahiri.Complex Variables, Theory Appl. 49 (2004), 1063-1078. Zbl 1067.30055, MR 2111304, 10.1080/02781070410001701074
Reference: [2] Banerjee, A.: A uniqueness result on some differential polynomials sharing 1-points.Hiroshima Math. J. 37 (2007), 397-408. Zbl 1152.30023, MR 2376726, 10.32917/hmj/1200529810
Reference: [3] Banerjee, A.: On uniqueness for nonlinear differential polynomials sharing the same 1-point.Ann. Pol. Math. 89 (2006), 259-272. Zbl 1104.30018, MR 2262553, 10.4064/ap89-3-3
Reference: [4] Banerjee, A.: Meromorphic functions sharing one value.Int. J. Math. Math. Sci. 2005 (2005), 3587-3598. Zbl 1093.30024, MR 2205158, 10.1155/IJMMS.2005.3587
Reference: [5] Fang, M., Qiu, H.: Meromorphic functions that share fixed-points.J. Math. Anal. Appl. 268 (2002), 426-439. Zbl 1030.30028, MR 1896207, 10.1006/jmaa.2000.7270
Reference: [6] Frank, G.: Eine Vermutung von Hayman über Nullstellen meromorpher Funktionen.Math. Z. 149 German (1976), 29-36. MR 0422615
Reference: [7] Hayman, W. K.: Meromorphic Functions.Oxford Mathematical Monographs Clarendon Press, Oxford (1964). Zbl 0115.06203, MR 0164038
Reference: [8] Lahiri, I.: On a question of Hong Xun Yi.Arch. Math., Brno 38 (2002), 119-128. Zbl 1087.30028, MR 1909593
Reference: [9] Lahiri, I.: Weighted sharing and uniqueness of meromorphic functions.Nagoya Math. J. 161 (2001), 193-206. Zbl 0981.30023, MR 1820218, 10.1017/S0027763000027215
Reference: [10] Lahiri, I.: Weighted value sharing and uniqueness of meromorphic functions.Complex Variables, Theory Appl. 46 (2001), 241-253. Zbl 1025.30027, MR 1869738, 10.1080/17476930108815411
Reference: [11] Lahiri, I.: Uniqueness of meromorphic functions when two linear differential polynomials share the same 1-points.Ann. Pol. Math. 71 (1999), 113-128. Zbl 0938.30022, MR 1703886, 10.4064/ap-71-2-113-128
Reference: [12] Lahiri, I., Dewan, S.: Value distribution of the product of a meromorphic function and its derivative.Kodai Math. J. 26 (2003), 95-100. Zbl 1077.30025, MR 1966685, 10.2996/kmj/1050496651
Reference: [13] Lahiri, I., Mandal, N.: Uniqueness of nonlinear differential polynomials sharing simple and double 1-points.Int. J. Math. Math. Sci. 2005 (2005), 1933-1942. Zbl 1084.30029, MR 2176445, 10.1155/IJMMS.2005.1933
Reference: [14] Lahiri, I., Pal, R.: Non-linear differential polynomials sharing 1-points.Bull. Korean Math. Soc. 43 (2006), 161-168. MR 2204868, 10.4134/BKMS.2006.43.1.161
Reference: [15] Lahiri, I., Sahoo, P.: Uniqueness of non-linear differential polynomials sharing 1-points.Georgian Math. J. 12 (2005), 131-138. Zbl 1073.30022, MR 2136891
Reference: [16] Lahiri, I., Sarkar, A.: Nonlinear differential polynomials sharing 1-points with weight two.Chin. J. Contemp. Math. 25 (2004), 325-334. Zbl 1069.30051, MR 2159311
Reference: [17] Li, X.-M., Gao, L.: Meromorphic functions sharing a nonzero polynomial \CM.Bull. Korean Math. Soc. 47 (2010), 319-339. Zbl 1189.30066, MR 2650701, 10.4134/BKMS.2010.47.2.319
Reference: [18] Lin, W. C.: Uniqueness of differential polynomials and a problem of Lahiri.Pure Appl. Math. 17 Chinese (2001), 104-110. MR 1848848
Reference: [19] Lin, W.-C., Yi, H.-X.: Uniqueness theorems for meromorphic function.Indian J. Pure Appl. Math. 35 (2004), 121-132. Zbl 1056.30031, MR 2040726
Reference: [20] Meng, C.: On unicity of meromorphic functions when two differential polynomials share one value.Hiroshima Math. J. 39 (2009), 163-179. Zbl 1182.30051, MR 2543648, 10.32917/hmj/1249046335
Reference: [21] Qiu, H., Fang, M.: On the uniqueness of entire functions.Bull. Korean Math. Soc. 41 (2004), 109-116. Zbl 1134.30325, MR 2036806, 10.4134/BKMS.2004.41.1.109
Reference: [22] Sahoo, P.: Meromorphic functions sharing a non zero polynomial \IM.Kyungpook Math. J. 53 (2013), 191-205. MR 3078082, 10.5666/KMJ.2013.53.2.191
Reference: [23] Sahoo, P.: Uniqueness of meromorphic functions when two differential polynomials share one value \IM.Mat. Vesn. 62 (2010), 169-182. Zbl 1289.30190, MR 2639145
Reference: [24] Yamanoi, K.: The second main theorem for small functions and related problems.Acta Math. 192 (2004), 225-294. Zbl 1203.30035, MR 2096455, 10.1007/BF02392741
Reference: [25] Yang, C.-C., Hua, X.: Uniqueness and value-sharing of meromorphic functions.Ann. Acad. Sci. Fenn., Math. 22 (1997), 395-406. Zbl 0890.30019, MR 1469799
Reference: [26] Yang, C.-C., Yi, H.-X.: Uniqueness Theory of Meromorphic Functions.Mathematics and Its Applications 557 Kluwer Academic Publishers, Dordrecht; Science Press, Beijing (2003). Zbl 1070.30011, MR 2105668
Reference: [27] Yi, H. X.: On characteristic function of a meromorphic function and its derivative.Indian J. Math. 33 (1991), 119-133. Zbl 0799.30018, MR 1140875
Reference: [28] Zhang, Q.: Meromorphic function that shares one small function with its derivative.J. Inequal. Pure Appl. Math. (electronic only) 6 (2005), Article No. 116, 13 pages. Zbl 1097.30033, MR 2178297
.

Files

Files Size Format View
MathBohem_141-2016-1_2.pdf 314.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo