Previous |  Up |  Next

Article

Title: Kannan-type cyclic contraction results in $2$-Menger space (English)
Author: Choudhury, Binayak Samadder
Author: BHANDARI, Samir Kumar
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 1
Year: 2016
Pages: 37-58
Summary lang: English
.
Category: math
.
Summary: In this paper we establish Kannan-type cyclic contraction results in probabilistic 2-metric spaces. We use two different types of $t$-norm in our theorems. In our first theorem we use a Hadzic-type $t$-norm. We use the minimum $t$-norm in our second theorem. We prove our second theorem by different arguments than the first theorem. A control function is used in our second theorem. These results generalize some existing results in probabilistic 2-metric spaces. Our results are illustrated with an example. (English)
Keyword: $2$-Menger space
Keyword: Cauchy sequence
Keyword: fixed point
Keyword: $\phi $-function
Keyword: $\psi $-function
Keyword: cyclic contraction
MSC: 47H10
MSC: 54E40
MSC: 54H25
idZBL: Zbl 06562157
idMR: MR3475136
DOI: 10.21136/MB.2016.3
.
Date available: 2016-03-17T19:44:14Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/144850
.
Reference: [1] Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.Fundam. Math. 3 French (1922), 133-181. 10.4064/fm-3-1-133-181
Reference: [2] Chang, S.-S., Huang, N. J.: On the generalized 2-metric spaces and probabilistic 2-metric spaces with applications to fixed point theory.Math. Jap. 34 (1989), 885-900. Zbl 0692.54030, MR 1025044
Reference: [3] Choudhury, B. S., Das, K.: A coincidence point result in Menger spaces using a control function.Chaos Solitons Fractals 42 (2009), 3058-3063. Zbl 1198.54072, MR 2560014, 10.1016/j.chaos.2009.04.020
Reference: [4] Choudhury, B. S., Das, K.: Fixed points of generalized Kannan type mappings in generalized Menger spaces.Commun. Korean Math. Soc. 24 (2009), 529-537. Zbl 1231.54020, MR 2568990, 10.4134/CKMS.2009.24.4.529
Reference: [5] Choudhury, B. S., Das, K.: A new contraction principle in Menger spaces.Acta Math. Sin., Engl. Ser. 24 (2008), 1379-1386. Zbl 1155.54026, MR 2438308, 10.1007/s10114-007-6509-x
Reference: [6] Choudhury, B. S., Das, K., Bhandari, S. K.: A fixed point theorem in $2$-Menger space using a control function.Bull. Calcutta Math. Soc. 104 (2012), 21-30. MR 3088824
Reference: [7] Choudhury, B. S., Das, K., Bhandari, S. K.: Cyclic contraction result in $2$-Menger space.Bull. Int. Math. Virtual Inst. 2 (2012), 223-234. MR 3159041
Reference: [8] Choudhury, B. S., Das, K., Bhandari, S. K.: A fixed point theorem for Kannan type mappings in $2$-Menger space using a control function.Bull. Math. Anal. Appl. 3 (2011), 141-148. Zbl 1314.47076, MR 2955353
Reference: [9] Choudhury, B. S., Das, K., Bhandari, S. K.: A generalized cyclic {$C$}-contraction principle in Menger spaces using a control function.Int. J. Appl. Math. 24 (2011), 663-673. MR 2931524
Reference: [10] Choudhury, B. S., Das, K., Bhandari, S. K.: Fixed point theorem for mappings with cyclic contraction in Menger spaces.Int. J. Pure Appl. Sci. Technol. 4 (2011), 1-9. MR 3001859
Reference: [11] Connell, E. H.: Properties of fixed point spaces.Proc. Am. Math. Soc. 10 (1959), 974-979. Zbl 0163.17705, MR 0110093, 10.1090/S0002-9939-1959-0110093-3
Reference: [12] Dutta, P. N., Choudhury, B. S.: A generalized contraction principle in Menger spaces using a control function.Anal. Theory Appl. 26 (2010), 110-121. Zbl 1224.54091, MR 2653705, 10.1007/s10496-010-0110-3
Reference: [13] G{ä}hler, S.: Über die Uniformisierbarkeit 2-metrischer Räume.Math. Nachr. 28 German (1965), 235-244. Zbl 0142.39804, MR 0178452, 10.1002/mana.19640280309
Reference: [14] G{ä}hler, S.: 2-metrische Räume und ihre topologische Struktur.Math. Nachr. 26 German (1963), 115-148. Zbl 0117.16003, MR 0162224, 10.1002/mana.19630260109
Reference: [15] Gole{ţ}, I.: A fixed point theorem in probabilistic 2-metric spaces.Inst. Politehn. Traian Vuia Timişoara Lucrăr. Sem. Mat. Fiz. (1988), 21-26. MR 1221431
Reference: [16] Had{ž}i{ć}, O.: A fixed point theorem for multivalued mappings in $2$-Menger spaces.Zb. Rad., Prir.-Mat. Fak., Univ. Novom Sadu, Ser. Mat. 24 (1994), 1-7. Zbl 0897.54036
Reference: [17] Hadži{ć}, O., Pap, E.: Fixed Point Theory in Probabilistic Metric Spaces.Mathematics and Its Applications 536 Kluwer Academic Publishers, Dordrecht (2001). MR 1896451
Reference: [18] Janos, L.: On mappings contractive in the sense of Kannan.Proc. Am. Math. Soc. 61 (1976), 171-175. Zbl 0364.54022, MR 0425936, 10.1090/S0002-9939-1976-0425936-3
Reference: [19] Kada, O., Suzuki, T., Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces.Math. Jap. 44 (1996), 381-391. Zbl 0897.54029, MR 1416281
Reference: [20] Kannan, R.: Some results on fixed points. {II}.Am. Math. Mon. 76 (1969), 405-408. Zbl 0179.28203, MR 0257838, 10.2307/2316437
Reference: [21] Kannan, R.: Some results on fixed points.Bull. Calcutta Math. Soc. 60 (1968), Article No. 11, 71-76. Zbl 0209.27104, MR 0257837
Reference: [22] Karpagam, S., Agrawal, S.: Best proximity point theorems for cyclic orbital Meir-Keeler contraction maps.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 74 (2011), 1040-1046. Zbl 1206.54047, MR 2746787, 10.1016/j.na.2010.07.026
Reference: [23] Khan, M. S.: On the convergence of sequences of fixed points in 2-metric spaces.Indian J. Pure Appl. Math. 10 (1979), 1062-1067. Zbl 0417.54020, MR 0547888
Reference: [24] Khan, M. S., Swaleh, M., Sessa, S.: Fixed point theorems by altering distances between the points.Bull. Aust. Math. Soc. 30 (1984), 1-9. Zbl 0553.54023, MR 0753555, 10.1017/S0004972700001659
Reference: [25] Kikkawa, M., Suzuki, T.: Some similarity between contractions and Kannan mappings. {II}.Bull. Kyushu Inst. Technol., Pure Appl. Math. 55 (2008), 1-13. Zbl 1163.54022, MR 2455257
Reference: [26] Kikkawa, M., Suzuki, T.: Some similarity between contractions and Kannan mappings.Fixed Point Theory Appl. (electronic only) 2008 (2008), Article No. 649749, 8 pages. Zbl 1163.54022, MR 2395313
Reference: [27] Kirk, W. A., Srinivasan, P. S., Veeramani, P.: Fixed points for mappings satisfying cyclical contractive conditions.Fixed Point Theory 4 (2003), 79-89. Zbl 1052.54032, MR 2031823
Reference: [28] Lal, S. N., Singh, A. K.: An analogue of Banach's contraction principle for 2-metric spaces.Bull. Aust. Math. Soc. 18 (1978), 137-143. Zbl 0385.54028, MR 0645161, 10.1017/S0004972700007887
Reference: [29] Mihe{ţ}, D.: Altering distances in probabilistic Menger spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 71 (2009), 2734-2738. Zbl 1176.54034, MR 2532798, 10.1016/j.na.2009.01.107
Reference: [30] Naidu, S. V. R.: Some fixed point theorems in metric and 2-metric spaces.Int. J. Math. Math. Sci. 28 (2001), 625-636. Zbl 1001.47037, MR 1892319, 10.1155/S016117120101064X
Reference: [31] Saha, P. K., Tiwari, R.: An alternative proof of Kannan's fixed point theorem in a generalized metric space.News Bull. Calcutta Math. Soc. 31 (2008), 15-18. Zbl 1218.54049, MR 2682190
Reference: [32] Sastry, K. P. R., Babu, G. V. R.: Some fixed point theorems by altering distances between the points.Indian J. Pure Appl. Math. 30 (1999), 641-647. Zbl 0938.47044, MR 1701042
Reference: [33] Sastry, K. P. R., Naidu, S. V. R., Babu, G. V. R., Naidu, G. A.: Generalization of common fixed point theorems for weakly commuting map by altering distances.Tamkang J. Math. 31 (2000), 243-250. MR 1778222
Reference: [34] Schweizer, B., Sklar, A.: Probabilistic Metric Spaces.North-Holland Series in Probability and Applied Mathematics North-Holland Publishing, New York (1983). Zbl 0546.60010, MR 0790314
Reference: [35] Sehgal, V. M., Bharucha-Reid, A. T.: Fixed points of contraction mappings on probabilistic metric spaces.Math. Syst. Theory 6 (1972), 97-102. Zbl 0244.60004, MR 0310858, 10.1007/BF01706080
Reference: [36] Shi, Y., Ren, L., Wang, X.: The extension of fixed point theorems for set valued mapping.J. Appl. Math. Comput. 13 (2003), 277-286. Zbl 1060.47057, MR 2000215, 10.1007/BF02936092
Reference: [37] Shioji, N., Suzuki, T., Takahashi, W.: Contractive mappings, Kannan mappings and metric completeness.Proc. Am. Math. Soc. 126 (1998), 3117-3124. Zbl 0955.54009, MR 1469434, 10.1090/S0002-9939-98-04605-X
Reference: [38] Subrahmanyam, P. V.: Completeness and fixed-points.Monatsh. Math. 80 (1975), 325-330. Zbl 0312.54048, MR 0391065, 10.1007/BF01472580
Reference: [39] W{ł}odarczyk, K., Plebaniak, R., Banach, A.: Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 70 (2009), 3332-3341 erratum ibid. 71 3585-3586 (2009). Zbl 1171.54311, MR 2503079, 10.1016/j.na.2008.04.037
Reference: [40] W{ł}odarczyk, K., Plebaniak, R., Obczy{ń}ski, C.: Convergence theorems, best approximation and best proximity for set-valued dynamic systems of relatively quasi-asymptotic contractions in cone uniform spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 72 (2010), 794-805. Zbl 1185.54020, MR 2579346, 10.1016/j.na.2009.07.024
Reference: [41] Zeng, W. Z.: Probabilistic 2-metric spaces.J. Math. Res. Exposition 7 (1987), 241-245. MR 0929343
.

Files

Files Size Format View
MathBohem_141-2016-1_3.pdf 306.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo