Title:
|
Linear maps preserving $A$-unitary operators (English) |
Author:
|
Chahbi, Abdellatif |
Author:
|
Kabbaj, Samir |
Author:
|
Charifi, Ahmed |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
141 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
59-70 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $\mathcal {H}$ be a complex Hilbert space, $A$ a positive operator with closed range in $\mathscr {B}(\mathcal {H})$ and $\mathscr {B}_{A}(\mathcal {H})$ the sub-algebra of $\mathscr {B}(\mathcal {H})$ of all \mbox {$A$-self}-adjoint operators. Assume $\phi \colon \mathscr {B}_{A}(\mathcal {H})$ onto itself is a linear continuous map. This paper shows that if $\phi $ preserves \mbox {$A$-unitary} operators such that $\phi (I)=P$ then $\psi $ defined by $\psi (T)=P\phi (PT)$ is a homomorphism or an anti-homomorphism and $\psi (T^{\sharp })=\psi (T)^{\sharp }$ for all $T \in \mathscr {B}_{A}(\mathcal {H})$, where $P=A^{+}A$ and $A^{+}$ is the Moore-Penrose inverse of $A$. A similar result is also true if $\phi $ preserves \mbox {$A$-quasi}-unitary operators in both directions such that there exists an operator $T$ satisfying $P\phi (T)=P$. (English) |
Keyword:
|
linear preserver problem |
Keyword:
|
semi-inner product |
MSC:
|
15A86 |
MSC:
|
46C50 |
idZBL:
|
Zbl 06562158 |
idMR:
|
MR3475137 |
DOI:
|
10.21136/MB.2016.4 |
. |
Date available:
|
2016-03-17T19:45:46Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144851 |
. |
Reference:
|
[1] Arias, M. L., Corach, G., Gonzalez, M. C.: Metric properties of projections in semi-Hilbertian spaces.Integral Equations Oper. Theory 62 (2008), 11-28. Zbl 1181.46018, MR 2442900, 10.1007/s00020-008-1613-6 |
Reference:
|
[2] Arias, M. L., Corach, G., Gonzalez, M. C.: Partial isometries in semi-Hilbertian spaces.Linear Algebra Appl. 428 (2008), 1460-1475. Zbl 1140.46009, MR 2388631 |
Reference:
|
[3] Brešar, M., {Š}emrl, P.: Linear maps preserving the spectral radius.J. Funct. Anal. 142 (1996), Article No. 0153, 360-368. Zbl 0873.47002, MR 1423038, 10.1006/jfan.1996.0153 |
Reference:
|
[4] Brešar, M., {Š}emrl, P.: Mappings which preserve idempotents, local automorphisms, and local derivations.Can. J. Math. 45 (1993), 483-496. Zbl 0796.15001, MR 1222512, 10.4153/CJM-1993-025-4 |
Reference:
|
[5] Douglas, R. G.: On the operator equation {$S^{\ast} XT=X$} and related topics.Acta Sci. Math. 30 (1969), 19-32. MR 0250106 |
Reference:
|
[6] Douglas, R. G.: On majorization, factorization, and range inclusion of operators on Hilbert space.Proc. Am. Math. Soc. 17 (1966), 413-415. Zbl 0146.12503, MR 0203464, 10.1090/S0002-9939-1966-0203464-1 |
Reference:
|
[7] Frobenius, G.: Über die Darstellung der endlichen Gruppen durch lineare Substitutionen.Berl. Ber. 1897 German (1897), 994-1015. |
Reference:
|
[8] Herstein, I. N.: Topics in Ring Theory.Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). Zbl 0232.16001, MR 0271135 |
Reference:
|
[9] Li, C.-K., Tsing, N.-K.: Linear preserver problems: A brief introduction and some special techniques.Linear Algebra Appl. 162-164 (1992), 217-235. Zbl 0762.15016, MR 1148401 |
Reference:
|
[10] Mbekhta, M.: Linear maps preserving the generalized spectrum.Extr. Math. 22 (2007), 45-54. Zbl 1160.47033, MR 2368700 |
Reference:
|
[11] Omladič, M., {Š}emrl, P.: Linear mappings that preserve potent operators.Proc. Am. Math. Soc. 123 (1995), 1069-1074. Zbl 0831.47026, MR 1254849, 10.1090/S0002-9939-1995-1254849-4 |
Reference:
|
[12] Palmer, T. W.: Banach Algebras and the General Theory of \mbox{$*$-algebras}, II.Encyclopedia of Mathematics and Its Applications 79 Cambridge University Press, Cambridge (2001). MR 1819503 |
Reference:
|
[13] Palmer, T. W.: $\sp*$-representations of $U\sp*$-algebras.Proc. Int. Symp. on Operator Theory (Indiana Univ., Bloomington, Ind., 1970) 20 Cambridge University Press, Cambridge (2001), 929-933. MR 0410396 |
Reference:
|
[14] Phadke, S. V., Khasbardar, S. K., Thakare, N. K.: On QU-operators.Indian J. Pure Appl. Math. 8 (1977), 335-343. Zbl 0367.47015, MR 0463961 |
Reference:
|
[15] Pierce, S.: General introduction: A survey of linear preserver problems.Linear and Multilinear Algebra 33 (1992), 3-5. MR 1346778 |
Reference:
|
[16] Pt{á}k, V.: Banach algebras with involution.Manuscr. Math. 6 (1972), 245-290. Zbl 0304.46036, MR 0296705, 10.1007/BF01304613 |
Reference:
|
[17] Russo, B., Dye, H. A.: A note on unitary operators in {$C^{\ast} $}-algebras.Duke Math. J. 33 (1966), 413-416. MR 0193530, 10.1215/S0012-7094-66-03346-1 |
Reference:
|
[18] {Š}emrl, P.: Two characterizations of automorphisms on {$B(X)$}.Stud. Math. 105 (1993), 143-149. Zbl 0810.47001, MR 1226624, 10.4064/sm-105-2-143-149 |
Reference:
|
[19] Watkins, W.: Linear maps that preserve commuting pairs of matrices.Linear Algebra Appl. 14 (1976), 29-35. Zbl 0329.15005, MR 0480574, 10.1016/0024-3795(76)90060-4 |
. |