[1] Federson, M., Mesquita, J. G.: 
Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations. Differ. Integral Equ. 26 (2013), 1287-1320. 
MR 3129010 | 
Zbl 1313.34234[3] Federson, M., Schwabik, Š.: 
Generalized ODE approach to impulsive retarded functional differential equations. Differ. Integral Equ. 19 (2006), 1201-1234. 
MR 2278005 | 
Zbl 1212.34251[4] Fra{ň}kov{á}, D.: 
Regulated functions. Math. Bohem. 116 (1991), 20-59. 
MR 1100424[6] H{ö}nig, C. S.: 
Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints. North-Holland Mathematical Studies 16 North-Holland Publishing, \hbox{Amsterdam}-Oxford; American Elsevier Publishing, New York (1975). 
MR 0499969[7] Kurzweil, J.: 
Generalized ordinary differential equations and continuous dependence on a parameter. Czech. Math. J. 7 (82) (1957), 418-449. 
MR 0111875 | 
Zbl 0090.30002[8] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: 
Theory of Impulsive Differential Equations. Series in Modern Applied Mathematics Vol. 6 World Scientific, Singapore (1989). 
MR 1082551[10] Schwabik, Š.: 
Generalized Ordinary Differential Equations. Series in Real Analysis 5 World Scientific, Singapore (1992). 
MR 1200241 | 
Zbl 0781.34003