Previous |  Up |  Next

Article

Title: A new continuous dependence result for impulsive retarded functional differential equations (English)
Author: Federson, Márcia
Author: Mesquita, Jaqueline Godoy
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 1-12
Summary lang: English
.
Category: math
.
Summary: We consider a large class of impulsive retarded functional differential equations (IRFDEs) and prove a result concerning uniqueness of solutions of impulsive FDEs. Also, we present a new result on continuous dependence of solutions on parameters for this class of equations. More precisely, we consider a sequence of initial value problems for impulsive RFDEs in the above setting, with convergent right-hand sides, convergent impulse operators and uniformly convergent initial data. We assume that the limiting equation is an impulsive RFDE whose initial condition is the uniform limit of the sequence of the initial data and whose solution exists and is unique. Then, for sufficient large indexes, the elements of the sequence of impulsive retarded initial value problem admit a unique solution and such a sequence of solutions converges to the solution of the limiting Cauchy problem. (English)
Keyword: retarded functional differential equation
Keyword: impulse local existence
Keyword: impulse local existence uniqueness
Keyword: continuous dependence on parameters
MSC: 34K05
MSC: 34K45
idZBL: Zbl 06587867
idMR: MR3483216
DOI: 10.1007/s10587-016-0233-6
.
Date available: 2016-04-07T14:46:07Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144873
.
Reference: [1] Federson, M., Mesquita, J. G.: Averaging principle for functional differential equations with impulses at variable times via Kurzweil equations.Differ. Integral Equ. 26 (2013), 1287-1320. Zbl 1313.34234, MR 3129010
Reference: [2] Federson, M., Mesquita, J. G.: Averaging for retarded functional differential equations.J. Math. Anal. Appl. 382 (2011), 77-85. Zbl 1226.34075, MR 2805496, 10.1016/j.jmaa.2011.04.034
Reference: [3] Federson, M., Schwabik, Š.: Generalized ODE approach to impulsive retarded functional differential equations.Differ. Integral Equ. 19 (2006), 1201-1234. Zbl 1212.34251, MR 2278005
Reference: [4] Fra{ň}kov{á}, D.: Regulated functions.Math. Bohem. 116 (1991), 20-59. MR 1100424
Reference: [5] Hale, J. K., Lunel, S. M. Verduyn: Introduction to Functional Differential Equations.Applied Mathematical Sciences 99 Springer, New York (1993). MR 1243878, 10.1007/978-1-4612-4342-7_3
Reference: [6] H{ö}nig, C. S.: Volterra Stieltjes-Integral Equations. Functional Analytic Methods; Linear Constraints.North-Holland Mathematical Studies 16 North-Holland Publishing, \hbox{Amsterdam}-Oxford; American Elsevier Publishing, New York (1975). MR 0499969
Reference: [7] Kurzweil, J.: Generalized ordinary differential equations and continuous dependence on a parameter.Czech. Math. J. 7 (82) (1957), 418-449. Zbl 0090.30002, MR 0111875
Reference: [8] Lakshmikantham, V., Baĭnov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations.Series in Modern Applied Mathematics Vol. 6 World Scientific, Singapore (1989). MR 1082551
Reference: [9] Liu, X., Ballinger, G.: Continuous dependence on initial values for impulsive delay differential equations.Appl. Math. Lett. 17 (2004), 483-490. Zbl 1085.34558, MR 2045757, 10.1016/S0893-9659(04)90094-8
Reference: [10] Schwabik, Š.: Generalized Ordinary Differential Equations.Series in Real Analysis 5 World Scientific, Singapore (1992). Zbl 0781.34003, MR 1200241
.

Files

Files Size Format View
CzechMathJ_66-2016-1_1.pdf 265.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo