Previous |  Up |  Next

Article

Title: Packing constant for Cesàro-Orlicz sequence spaces (English)
Author: Ma, Zhen-Hua
Author: Jiang, Li-Ning
Author: Xin, Qiao-Ling
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 13-25
Summary lang: English
.
Category: math
.
Summary: The packing constant is an important and interesting geometric parameter of Banach spaces. Inspired by the packing constant for Orlicz sequence spaces, the main purpose of this paper is calculating the Kottman constant and the packing constant of the Cesàro-Orlicz sequence spaces (${\rm ces}_{\phi }$) defined by an Orlicz function $\phi $ equipped with the Luxemburg norm. In order to compute the constants, the paper gives two formulas. On the base of these formulas one can easily obtain the packing constant for the Cesàro sequence space ${\rm ces}_{p}$ and some other sequence spaces. Finally, a new constant $\widetilde {D}(X)$, which seems to be relevant to the packing constant, is given. (English)
Keyword: packing constant
Keyword: Cesàro sequence space
Keyword: Cesàro-Orlicz sequence space
MSC: 46A45
MSC: 46B20
idZBL: Zbl 06587868
idMR: MR3483217
DOI: 10.1007/s10587-016-0234-5
.
Date available: 2016-04-07T14:47:39Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144881
.
Reference: [1] Burlak, J. A. C., Rankin, R. A., Robertson, A. P.: The packing of spheres in the space $l_{p}$.Proc. Glasg. Math. Assoc. 4 (1958), 22-25. MR 0119151, 10.1017/S2040618500033797
Reference: [2] Chen, S.: Geometry of Orlicz Spaces.With a preface by Julian Musielak Dissertationes Math. (Rozprawy Mat.) 356 (1996), 204. Zbl 1089.46500, MR 1410390
Reference: [3] Cui, Y., Hudzik, H.: Packing constant for cesaro sequence spaces.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 47 (2001), 2695-2702. Zbl 1042.46505, MR 1972393, 10.1016/S0362-546X(01)00389-3
Reference: [4] Cui, Y., Hudzik, H.: On the banach-saks and weak banach-saks properties of some banach sequence spaces.Acta Sci. Math. 65 (1999), 179-187. MR 1702144
Reference: [5] Cui, Y., Hudzik, H., Petrot, N., Suantai, S., Szymaszkiewicz, A.: Basic topological and geometric properties of cesàro-orlicz spaces.Proc. Indian Acad. Sci., Math. Sci. 115 (2005), 461-476. MR 2184206, 10.1007/BF02829808
Reference: [6] Foralewski, P., Hudzik, H., Szymaszkiewicz, A.: Some remarks on cesàro-orlicz sequence spaces.Math. Inequal. Appl. 13 (2010), 363-386. Zbl 1198.46017, MR 2662025
Reference: [7] Foralewski, P., Hudzik, H., Szymaszkiewicz, A.: Local rotundity structure of cesàro-orlicz sequence spaces.J. Math. Anal. Appl. 345 (2008), 410-419. Zbl 1155.46007, MR 2422661, 10.1016/j.jmaa.2008.04.016
Reference: [8] Hudzik, H.: Every nonreflexive banach lattice has the packing constant equal to {$1/2$}.Collect. Math. 44 (1993), 129-134. MR 1280732
Reference: [9] Kottman, C. A.: Packing and reflexivity in banach spaces.Trans. Am. Math. Soc. 150 (1970), 565-576. MR 0265918, 10.1090/S0002-9947-1970-0265918-7
Reference: [10] Kubiak, D.: A note on cesàro-orlicz sequence spaces.J. Math. Anal. Appl. 349 (2009), 291-296. Zbl 1160.46013, MR 2455750, 10.1016/j.jmaa.2008.08.022
Reference: [11] Lee, P. Y.: Cesàro sequence spaces.Math. Chron. 13 (1984), 29-45. Zbl 0568.46006, MR 0769798
Reference: [12] Lim, S. K., Lee, P. Y.: An orlicz extension of cesàro sequence spaces.Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 28 (1988), 117-128. MR 0988964
Reference: [13] Luxemburg, W. A. J.: Banach Function Spaces.Thesis Technische Hogeschool te Delft (1955). MR 0072440
Reference: [14] Ma, Z., Cui, Y.: Some important geometric properties in cesàro-orlicz sequence spaces.Adv. Math., Beijing 42 (2013), 348-354. Zbl 1299.46017, MR 3144140
Reference: [15] Maligranda, L.: Orlicz Spaces and Interpolation.Seminars in Mathematics 5 Univ. Estadual de Campinas, Dep. de Matemática, Campinas (1989). Zbl 0874.46022, MR 2264389
Reference: [16] Maligranda, L., Petrot, N., Suantai, S.: On the james constant and $B$-convexity of cesàro and cesàro-orlicz sequences spaces.J. Math. Anal. Appl. 326 (2007), 312-331. MR 2277785, 10.1016/j.jmaa.2006.02.085
Reference: [17] Musielak, J.: Orlicz Spaces and Modular Spaces.Lecture Notes in Mathematics 1034 Springer, Berlin (1983). Zbl 0557.46020, MR 0724434
Reference: [18] Rankin, R. A.: On packings of spheres in hilbert space.Proc. Glasg. Math. Assoc. 2 (1955), 145-146. MR 0074014, 10.1017/S2040618500033220
Reference: [19] Saejung, S.: Another look at cesàro sequence spaces.J. Math. Anal. Appl. 366 (2010), 530-537. Zbl 1203.46008, MR 2600499, 10.1016/j.jmaa.2010.01.029
Reference: [20] Webb, J. R. L., Zhao, W.: On connections between set and ball measures of noncompactness.Bull. Lond. Math. Soc. 22 (1990), 471-477. MR 1082019, 10.1112/blms/22.5.471
Reference: [21] Wu, C. X., Lin, P., Piao, Q. Y., Lee, P. Y.: Sequence Space and Its Application.Harbin Institute of Technology Press Chinese (2001).
.

Files

Files Size Format View
CzechMathJ_66-2016-1_2.pdf 272.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo