Previous |  Up |  Next

Article

Title: Characterization of the alternating groups by their order and one conjugacy class length (English)
Author: Khalili Asboei, Alireza
Author: Mohammadyari, Reza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 63-70
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group, and let $N(G)$ be the set of conjugacy class sizes of $G$. By Thompson's conjecture, if $L$ is a finite non-abelian simple group, $G$ is a finite group with a trivial center, and $N(G)=N(L)$, then $L $ and $G$ are isomorphic. Recently, Chen et al.\ contributed interestingly to Thompson's conjecture under a weak condition. They only used the group order and one or two special conjugacy class sizes of simple groups and characterized successfully sporadic simple groups (see Li's PhD dissertation). In this article, we investigate validity of Thompson's conjecture under a weak condition for the alternating groups of degrees $p+1$ and $p+2$, where $p$ is a prime number. This work implies that Thompson's conjecture holds for the alternating groups of degree $p+1$ and $p+2$. (English)
Keyword: finite simple group
Keyword: conjugacy class size
Keyword: prime graph
Keyword: Thompson's conjecture
MSC: 20D06
MSC: 20D08
MSC: 20D60
idZBL: Zbl 06587873
idMR: MR3483222
DOI: 10.1007/s10587-016-0239-0
.
Date available: 2016-04-07T14:54:15Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144875
.
Reference: [1] Asboei, A. K., Mohammadyari, R.: Recognizing alternating groups by their order and one conjugacy class length.J. Algebra. Appl. 15 (2016), 7 pages \hfil doi: 10.1142/S0219498816500213. Zbl 1336.20026, MR 3405720, 10.1142/S0219498816500213
Reference: [2] Chen, G.: Further reflections on Thompson's conjecture.J. Algebra 218 (1999), 276-285. MR 1704687, 10.1006/jabr.1998.7839
Reference: [3] Chen, G.: On Thompson's conjecture.J. Algebra 185 (1996), 184-193. MR 1409982, 10.1006/jabr.1996.0320
Reference: [4] Chen, G. Y.: On Thompson's Conjecture.PhD thesis Sichuan University, Chengdu (1994).
Reference: [5] Chen, Y., Chen, G.: Recognizing $L_{2}(p)$ by its order and one special conjugacy class size.J. Inequal. Appl. (electronic only) (2012), 2012 Article ID 310, 10 pages. Zbl 1282.20016, MR 3027693
Reference: [6] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford (1985). Zbl 0568.20001, MR 0827219
Reference: [7] Gorenstein, D.: Finite Groups.Chelsea Publishing Company, New York (1980). Zbl 0463.20012, MR 0569209
Reference: [8] Hagie, M.: The prime graph of a sporadic simple group.Comm. Algebra 31 (2003), 4405-4424. Zbl 1031.20009, MR 1995543, 10.1081/AGB-120022800
Reference: [9] Iiyori, N., Yamaki, H.: Prime graph components of the simple groups of Lie type over the field of even characteristic.J. Algebra 155 (1993), 335-343. MR 1212233, 10.1006/jabr.1993.1048
Reference: [10] Iranmanesh, A., Alavi, S. H., Khosravi, B.: A characterization of $PSL(3,q)$ where $q$ is an odd prime power.J. Pure Appl. Algebra 170 (2002), 243-254. Zbl 1001.20005, MR 1904845, 10.1016/S0022-4049(01)00113-X
Reference: [11] Iranmanesh, A., Khosravi, B.: A characterization of $F_{4}(q)$ where $q$ is an odd prime power.London Math. Soc. Lecture Note Ser. 304 (2003), 277-283. Zbl 1058.20016, MR 2051533
Reference: [12] Iranmanesh, A., Khosravi, B., Alavi, S. H.: A characterization of PSU$_{3}(q)$ for $q>5$.Southeast Asian Bull. Math. 26 (2002), 33-44. Zbl 1019.20012, MR 2046570
Reference: [13] Kondtratev, A. S., Mazurov, V. D.: Recognition of alternating groups of prime degree from their element orders.Sib. Math. J. 41 (2000), 294-302. MR 1762188, 10.1007/BF02674599
Reference: [14] Li, J. B.: Finite Groups with Special Conjugacy Class Sizes or Generalized Permutable Subgroups.PhD thesis Southwest University, Chongqing (2012).
Reference: [15] Mazurov, V. D., Khukhro, E. I.: The Kourovka Notebook. Unsolved Problems in Group Theory. Including Archive of Solved Problems.Institute of Mathematics, Russian Academy of Sciences Siberian Div., Novosibirsk (2006). Zbl 1084.20001, MR 2263886
Reference: [16] Vasil'ev, A.: On connection between the structure of a finite group and the properties of its prime graph.Sib. Math. J. 46 (2005), 396-404. Zbl 1096.20019, MR 2164556, 10.1007/s11202-005-0042-x
Reference: [17] Williams, J. S.: Prime graph components of finite groups.J. Algebra. 69 (1981), 487-513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0
.

Files

Files Size Format View
CzechMathJ_66-2016-1_7.pdf 242.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo