Previous |  Up |  Next


MSC: 46B04, 47B33, 47B38
Full entry | Fulltext not available (moving wall 24 months)      Feedback
composition operator; weighted Dirichlet space; isometry
We investigate isometric composition operators on the weighted Dirichlet space $\mathcal {D}_\alpha $ with standard weights $(1-|z|^2)^\alpha $, $\alpha >-1$. The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space $\mathcal {D}$. We solve some of these but not in general. We also investigate the situation when $\mathcal {D}_\alpha $ is equipped with another equivalent norm.
[1] Banach, S.: Théorie des Opérations Linéaires. Éditions Jacques Gabay, Sceaux (1993). Reprint of the 1932 original French. MR 1357166
[2] Carswell, B. J., Hammond, C.: Composition operators with maximal norm on weighted Bergman spaces. Proc. Am. Math. Soc. 134 (2006), 2599-2605. DOI 10.1090/S0002-9939-06-08271-2 | MR 2213738
[3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions. Studies in Advanced Mathematics CRC Press, Boca Raton (1995). MR 1397026 | Zbl 0873.47017
[4] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces: Function Spaces. Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). MR 1957004
[5] Jaoua, N.: Isometric composition operators on the weighted Hardy spaces. Math. Nachr. 283 (2010), 1629-1636. DOI 10.1002/mana.200710159 | MR 2759799
[6] Martín, M. J., Vukoti{ć}, D.: Isometries of some classical function spaces among the composition operators. A. L. Matheson et al. Recent Advances in Operator-Related Function Theory. Proc. Conf., Dublin, Ireland, 2004 Contemporary Mathematics 393 American Mathematical Society, Providence (2006), 133-138. MR 2198376
[7] Martín, M. J., Vukoti{ć}, D.: Isometries of the Dirichlet space among the composition operators. Proc. Am. Math. Soc. 134 (2006), 1701-1705. DOI 10.1090/S0002-9939-05-08182-7 | MR 2204282
[8] Nordgren, E. A.: Composition operators. Can. J. Math. 20 (1968), 442-449. DOI 10.4153/CJM-1968-040-4 | MR 0223914 | Zbl 0161.34703
[9] Ryff, J. V.: Subordinate {$H^p$} functions. Duke Math. J. 33 (1966), 347-354. DOI 10.1215/S0012-7094-66-03340-0 | MR 0192062
[10] Shapiro, J. H.: What do composition operators know about inner functions?. Monatsh. Math. 130 (2000), 57-70. DOI 10.1007/s006050050087 | MR 1762064
[11] Shapiro, J. H.: Composition Operators and Classical Function Theory. Universitext: Tracts in Mathematics Springer, New York (1993). MR 1237406 | Zbl 0791.30033
Partner of
EuDML logo