Title:
|
Isometric composition operators on weighted Dirichlet space (English) |
Author:
|
Han, Shi-An |
Author:
|
Zhou, Ze-Hua |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
27-34 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We investigate isometric composition operators on the weighted Dirichlet space $\mathcal {D}_\alpha $ with standard weights $(1-|z|^2)^\alpha $, $\alpha >-1$. The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space $\mathcal {D}$. We solve some of these but not in general. We also investigate the situation when $\mathcal {D}_\alpha $ is equipped with another equivalent norm. (English) |
Keyword:
|
composition operator |
Keyword:
|
weighted Dirichlet space |
Keyword:
|
isometry |
MSC:
|
46B04 |
MSC:
|
47B33 |
MSC:
|
47B38 |
idZBL:
|
Zbl 06587869 |
idMR:
|
MR3483218 |
DOI:
|
10.1007/s10587-016-0235-4 |
. |
Date available:
|
2016-04-07T14:48:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144890 |
. |
Reference:
|
[1] Banach, S.: Théorie des Opérations Linéaires.Éditions Jacques Gabay, Sceaux (1993). Reprint of the 1932 original French. MR 1357166 |
Reference:
|
[2] Carswell, B. J., Hammond, C.: Composition operators with maximal norm on weighted Bergman spaces.Proc. Am. Math. Soc. 134 (2006), 2599-2605. Zbl 1110.47016, MR 2213738, 10.1090/S0002-9939-06-08271-2 |
Reference:
|
[3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics CRC Press, Boca Raton (1995). Zbl 0873.47017, MR 1397026 |
Reference:
|
[4] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces: Function Spaces.Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). Zbl 1011.46001, MR 1957004 |
Reference:
|
[5] Jaoua, N.: Isometric composition operators on the weighted Hardy spaces.Math. Nachr. 283 (2010), 1629-1636. Zbl 1200.47033, MR 2759799, 10.1002/mana.200710159 |
Reference:
|
[6] Martín, M. J., Vukoti{ć}, D.: Isometries of some classical function spaces among the composition operators.A. L. Matheson et al. Recent Advances in Operator-Related Function Theory. Proc. Conf., Dublin, Ireland, 2004 Contemporary Mathematics 393 American Mathematical Society, Providence (2006), 133-138. Zbl 1121.47018, MR 2198376 |
Reference:
|
[7] Martín, M. J., Vukoti{ć}, D.: Isometries of the Dirichlet space among the composition operators.Proc. Am. Math. Soc. 134 (2006), 1701-1705. Zbl 1082.47021, MR 2204282, 10.1090/S0002-9939-05-08182-7 |
Reference:
|
[8] Nordgren, E. A.: Composition operators.Can. J. Math. 20 (1968), 442-449. Zbl 0161.34703, MR 0223914, 10.4153/CJM-1968-040-4 |
Reference:
|
[9] Ryff, J. V.: Subordinate {$H^p$} functions.Duke Math. J. 33 (1966), 347-354. MR 0192062, 10.1215/S0012-7094-66-03340-0 |
Reference:
|
[10] Shapiro, J. H.: What do composition operators know about inner functions?.Monatsh. Math. 130 (2000), 57-70. MR 1762064, 10.1007/s006050050087 |
Reference:
|
[11] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics Springer, New York (1993). Zbl 0791.30033, MR 1237406 |
. |