Previous |  Up |  Next

Article

Title: Isometric composition operators on weighted Dirichlet space (English)
Author: Han, Shi-An
Author: Zhou, Ze-Hua
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 27-34
Summary lang: English
.
Category: math
.
Summary: We investigate isometric composition operators on the weighted Dirichlet space $\mathcal {D}_\alpha $ with standard weights $(1-|z|^2)^\alpha $, $\alpha >-1$. The main technique used comes from Martín and Vukotić who completely characterized the isometric composition operators on the classical Dirichlet space $\mathcal {D}$. We solve some of these but not in general. We also investigate the situation when $\mathcal {D}_\alpha $ is equipped with another equivalent norm. (English)
Keyword: composition operator
Keyword: weighted Dirichlet space
Keyword: isometry
MSC: 46B04
MSC: 47B33
MSC: 47B38
idZBL: Zbl 06587869
idMR: MR3483218
DOI: 10.1007/s10587-016-0235-4
.
Date available: 2016-04-07T14:48:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144890
.
Reference: [1] Banach, S.: Théorie des Opérations Linéaires.Éditions Jacques Gabay, Sceaux (1993). Reprint of the 1932 original French. MR 1357166
Reference: [2] Carswell, B. J., Hammond, C.: Composition operators with maximal norm on weighted Bergman spaces.Proc. Am. Math. Soc. 134 (2006), 2599-2605. Zbl 1110.47016, MR 2213738, 10.1090/S0002-9939-06-08271-2
Reference: [3] Cowen, C. C., MacCluer, B. D.: Composition Operators on Spaces of Analytic Functions.Studies in Advanced Mathematics CRC Press, Boca Raton (1995). Zbl 0873.47017, MR 1397026
Reference: [4] Fleming, R. J., Jamison, J. E.: Isometries on Banach Spaces: Function Spaces.Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics 129 Chapman and Hall/CRC, Boca Raton (2003). Zbl 1011.46001, MR 1957004
Reference: [5] Jaoua, N.: Isometric composition operators on the weighted Hardy spaces.Math. Nachr. 283 (2010), 1629-1636. Zbl 1200.47033, MR 2759799, 10.1002/mana.200710159
Reference: [6] Martín, M. J., Vukoti{ć}, D.: Isometries of some classical function spaces among the composition operators.A. L. Matheson et al. Recent Advances in Operator-Related Function Theory. Proc. Conf., Dublin, Ireland, 2004 Contemporary Mathematics 393 American Mathematical Society, Providence (2006), 133-138. Zbl 1121.47018, MR 2198376
Reference: [7] Martín, M. J., Vukoti{ć}, D.: Isometries of the Dirichlet space among the composition operators.Proc. Am. Math. Soc. 134 (2006), 1701-1705. Zbl 1082.47021, MR 2204282, 10.1090/S0002-9939-05-08182-7
Reference: [8] Nordgren, E. A.: Composition operators.Can. J. Math. 20 (1968), 442-449. Zbl 0161.34703, MR 0223914, 10.4153/CJM-1968-040-4
Reference: [9] Ryff, J. V.: Subordinate {$H^p$} functions.Duke Math. J. 33 (1966), 347-354. MR 0192062, 10.1215/S0012-7094-66-03340-0
Reference: [10] Shapiro, J. H.: What do composition operators know about inner functions?.Monatsh. Math. 130 (2000), 57-70. MR 1762064, 10.1007/s006050050087
Reference: [11] Shapiro, J. H.: Composition Operators and Classical Function Theory.Universitext: Tracts in Mathematics Springer, New York (1993). Zbl 0791.30033, MR 1237406
.

Files

Files Size Format View
CzechMathJ_66-2016-1_3.pdf 243.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo