Previous |  Up |  Next


Lie rings; commutative associative rings
Let $K$ be an associative and commutative ring with $1$, $k$ a subring of $K$ such that $1\in k$, $n\geq 2$ an integer. The paper describes subrings of the general linear Lie ring $gl_{n} ( K )$ that contain the Lie ring of all traceless matrices over $k$.
[1] Bashkirov E.L.: Matrix Lie rings that contain a one-dimensional Lie algebra of semi-simple matrices. J. Prime Res. Math. 3 (2007), 111–119. MR 2397770
[2] Bashkirov E.L.: Matrix Lie rings that contain an abelian subring. J. Prime Res. Math. 4 (2008), 113–117. MR 2490007
[3] Wang D.Y.: Extensions of Lie algebras according to the extension of fields. J. Math. Res. Exposition 25 (2005), no. 3, 543–547. MR 2163737
[4] Zhao Y.X., Wang D.Y., Wang Ch.H.: Intermediate Lie algebras between the symplectic algebras and the general linear Lie algebras over commutative rings. J. Math. (Wuhan) 29 (2009), no. 3, 247-252. MR 2541763
[5] Vavilov N.A.: Intermediate subgroups in Chevalley groups. Groups of Lie Type and Their Geometries (Como 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233–280. MR 1320525
Partner of
EuDML logo