Previous |  Up |  Next

Article

Title: On matrix Lie rings over a commutative ring that contain the special linear Lie ring (English)
Author: Bashkirov, Evgenii L.
Author: Pekönür, Esra
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 1-6
Summary lang: English
.
Category: math
.
Summary: Let $K$ be an associative and commutative ring with $1$, $k$ a subring of $K$ such that $1\in k$, $n\geq 2$ an integer. The paper describes subrings of the general linear Lie ring $gl_{n} ( K )$ that contain the Lie ring of all traceless matrices over $k$. (English)
Keyword: Lie rings
Keyword: commutative associative rings
MSC: 17B05
MSC: 17B99
idZBL: Zbl 06562191
idMR: MR3478334
DOI: 10.14712/1213-7243.2015.144
.
Date available: 2016-04-12T04:59:31Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144908
.
Reference: [1] Bashkirov E.L.: Matrix Lie rings that contain a one-dimensional Lie algebra of semi-simple matrices.J. Prime Res. Math. 3 (2007), 111–119. MR 2397770
Reference: [2] Bashkirov E.L.: Matrix Lie rings that contain an abelian subring.J. Prime Res. Math. 4 (2008), 113–117. MR 2490007
Reference: [3] Wang D.Y.: Extensions of Lie algebras according to the extension of fields.J. Math. Res. Exposition 25 (2005), no. 3, 543–547. MR 2163737
Reference: [4] Zhao Y.X., Wang D.Y., Wang Ch.H.: Intermediate Lie algebras between the symplectic algebras and the general linear Lie algebras over commutative rings.J. Math. (Wuhan) 29 (2009), no. 3, 247-252. MR 2541763
Reference: [5] Vavilov N.A.: Intermediate subgroups in Chevalley groups.Groups of Lie Type and Their Geometries (Como 1993), London Math. Soc. Lecture Note Ser., 207, Cambridge Univ. Press, Cambridge, 1995, pp. 233–280. MR 1320525
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_1.pdf 192.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo