Previous |  Up |  Next

Article

Title: On $n$-thin dense sets in powers of topological spaces (English)
Author: Bartoš, Adam
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 73-82
Summary lang: English
.
Category: math
.
Summary: A subset of a product of topological spaces is called $n$-thin if every its two distinct points differ in at least $n$ coordinates. We generalize a construction of Gruenhage, Natkaniec, and Piotrowski, and obtain, under CH, a countable $T_3$ space $X$ without isolated points such that $X^n$ contains an $n$-thin dense subset, but $X^{n + 1}$ does not contain any $n$-thin dense subset. We also observe that part of the construction can be carried out under MA. (English)
Keyword: dense set
Keyword: thin set
Keyword: $\kappa $-thin set
Keyword: independent family
MSC: 54A35
MSC: 54B10
idZBL: Zbl 06562197
idMR: MR3478340
DOI: 10.14712/1213-7243.2015.148
.
Date available: 2016-04-12T05:04:55Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144916
.
Reference: [En] Engelking R.: General Topology.revised and completed edition, Sigma series in pure mathematics, 6, Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [GNP] Gruenhage G., Natkaniec T., Piotrowski Z.: On thin, very thin, and slim dense sets.Topology Appl. 154 (2007), no. 4, 817–833. MR 2294630, 10.1016/j.topol.2006.08.007
Reference: [HG] Hutchison J., Gruenhage G.: Thin-type dense sets and related properties.Topology Appl. 158 (2011), no. 16, 2174–2183. MR 2831904, 10.1016/j.topol.2011.07.005
Reference: [Je] Jech T.: Set Theory.The Third Millennium Edition, revised and expanded, Springer, Berlin, 2002. Zbl 1007.03002, MR 1940513
Reference: [Pi] Piotrowski Z.: Dense subsets of product spaces.Questions Answers Gen. Topology 11 (1993), 313–320. MR 1234206
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_7.pdf 247.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo