Previous |  Up |  Next

Article

Title: Normability of gamma spaces (English)
Author: Soudský, Filip
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 1
Year: 2016
Pages: 63-71
Summary lang: English
.
Category: math
.
Summary: We give a full characterization of normability of Lorentz spaces $\Gamma_{w}^{p}$. This result is in fact known since it can be derived from Kamińska A., Maligranda L., On Lorentz spaces, Israel J. Funct. Anal. 140 (2004), 285--318. In this paper we present an alternative and more direct proof. (English)
Keyword: Lorentz space
Keyword: weight
Keyword: normability
MSC: 46E30
idZBL: Zbl 06562196
idMR: MR3478339
DOI: 10.14712/1213-7243.2015.149
.
Date available: 2016-04-12T05:04:22Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/144915
.
Reference: [1] Ariño M.A., Muckenhoupt B.: A characterization of the dual of the classical Lorentz sequence space $d(w,q)$.Proc. Amer. Math. Soc. 112 (1991), no. 1, 87–89. MR 1031661, 10.2307/2048483
Reference: [2] Carro M.J., del Amo A.G., Soria J.: Weak type weights and normable Lorentz spaces.Proc. Amer. Math. Soc. 124 (1996), no. 3, 849–857. MR 1307501, 10.1090/S0002-9939-96-03214-5
Reference: [3] Carro M.J., Soria J.: Weighted Lorentz spaces and the Hardy operator.J. Funct. Anal. 112 (1993), no. 2, 480–494. MR 1213148, 10.1006/jfan.1993.1042
Reference: [4] Kamińska A., Maligranda L.: On Lorentz spaces.Israel J. Funct. Anal. 140 (2004), 285–318. MR 2054849
Reference: [5] Lorentz G.G.: On the theory of spaces.Pacific J. Math. 1 (1951), 411–429. MR 0044740, 10.2140/pjm.1951.1.411
Reference: [6] Sawyer E.: Boundedness of classical operators on classical Lorentz spaces.Studia Math. 96 (1990), no. 2, 145–158. MR 1052631
Reference: [7] Sinnamon G., Stepanov V.D.: The weighted Hardy inequality: new proofs and the case $p=1$.J. London Math. Soc. (2) 54 (1996), no. 1, 89–101. MR 1395069, 10.1112/jlms/54.1.89
Reference: [8] Stepanov V.D.: Integral operators on the cone of monotone functions and embeddings of Lorentz spaces.Dokl. Akad. Nauk SSSR 317 (1991), no. 6, 1308–1311. MR 1118029
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-1_6.pdf 209.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo