| Title:
|
Normability of gamma spaces (English) |
| Author:
|
Soudský, Filip |
| Language:
|
English |
| Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
| ISSN:
|
0010-2628 (print) |
| ISSN:
|
1213-7243 (online) |
| Volume:
|
57 |
| Issue:
|
1 |
| Year:
|
2016 |
| Pages:
|
63-71 |
| Summary lang:
|
English |
| . |
| Category:
|
math |
| . |
| Summary:
|
We give a full characterization of normability of Lorentz spaces $\Gamma_{w}^{p}$. This result is in fact known since it can be derived from Kamińska A., Maligranda L., On Lorentz spaces, Israel J. Funct. Anal. 140 (2004), 285--318. In this paper we present an alternative and more direct proof. (English) |
| Keyword:
|
Lorentz space |
| Keyword:
|
weight |
| Keyword:
|
normability |
| MSC:
|
46E30 |
| idZBL:
|
Zbl 06562196 |
| idMR:
|
MR3478339 |
| DOI:
|
10.14712/1213-7243.2015.149 |
| . |
| Date available:
|
2016-04-12T05:04:22Z |
| Last updated:
|
2020-01-05 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144915 |
| . |
| Reference:
|
[1] Ariño M.A., Muckenhoupt B.: A characterization of the dual of the classical Lorentz sequence space $d(w,q)$.Proc. Amer. Math. Soc. 112 (1991), no. 1, 87–89. MR 1031661, 10.2307/2048483 |
| Reference:
|
[2] Carro M.J., del Amo A.G., Soria J.: Weak type weights and normable Lorentz spaces.Proc. Amer. Math. Soc. 124 (1996), no. 3, 849–857. MR 1307501, 10.1090/S0002-9939-96-03214-5 |
| Reference:
|
[3] Carro M.J., Soria J.: Weighted Lorentz spaces and the Hardy operator.J. Funct. Anal. 112 (1993), no. 2, 480–494. MR 1213148, 10.1006/jfan.1993.1042 |
| Reference:
|
[4] Kamińska A., Maligranda L.: On Lorentz spaces.Israel J. Funct. Anal. 140 (2004), 285–318. MR 2054849 |
| Reference:
|
[5] Lorentz G.G.: On the theory of spaces.Pacific J. Math. 1 (1951), 411–429. MR 0044740, 10.2140/pjm.1951.1.411 |
| Reference:
|
[6] Sawyer E.: Boundedness of classical operators on classical Lorentz spaces.Studia Math. 96 (1990), no. 2, 145–158. MR 1052631 |
| Reference:
|
[7] Sinnamon G., Stepanov V.D.: The weighted Hardy inequality: new proofs and the case $p=1$.J. London Math. Soc. (2) 54 (1996), no. 1, 89–101. MR 1395069, 10.1112/jlms/54.1.89 |
| Reference:
|
[8] Stepanov V.D.: Integral operators on the cone of monotone functions and embeddings of Lorentz spaces.Dokl. Akad. Nauk SSSR 317 (1991), no. 6, 1308–1311. MR 1118029 |
| . |