Previous |  Up |  Next

Article

Keywords:
$\aleph_1$-calibre; star countable; zeroset diagonal
Summary:
We prove that, assuming \emph{CH}, if $X$ is a space with $\aleph_1$-calibre and a zeroset diagonal, then $X$ is submetrizable. This gives a consistent positive answer to the question of Buzyakova in Observations on spaces with zeroset or regular $G_\delta$-diagonals, Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469--473. We also make some observations on spaces with $\aleph_1$-calibre.
References:
[1] Buzyakova R.Z.: Observations on spaces with zeroset or regular $G_\delta$-diagonals. Comment. Math. Univ. Carolin. 46 (2005), no. 3, 469–473. MR 2174525
[2] Buzyakova R.Z.: Cardinalities of ccc-spaces with regular $G_\delta$-diagonals. Topology Appl. 153 (2006), no. 11, 1696–1698. DOI 10.1016/j.topol.2005.06.004 | MR 2227022
[3] Basile D., Bella A., Ridderbos G.J.: Weak extent, submetrizability and diagonal degrees. Houston J. Math. 40 (2014), no. 1, 255–266. MR 3210565
[4] Engelking R.: General Topology. Heldermann, Berlin, 1989. MR 1039321 | Zbl 0684.54001
[5] Ikenaga S.: A class which contains Lindelöf spaces, separable spaces and countably compact spaces. Memoirs of Numazu College of Technology 18 (1983), 105–108.
[6] Martin H.W.: Contractibility of topological spaces onto metric spaces. Pacific J. Math. 61 (1975), no. 1, 209–217. DOI 10.2140/pjm.1975.61.209 | MR 0410685
[7] Wage M.L., Fleissner W.G., Reed G.M.: Normality versus countable paracompactness in perfect spaces. Bull. Amer. Math. Soc. 82 (1976), no. 4, 635–639. DOI 10.1090/S0002-9904-1976-14150-X | MR 0410665
[8] Tall F.D.: First Countable Space with $\aleph_1$-Calibre May or May not be Separable. Set-theoretic Topology, Academic Press, New York, 1977. MR 0500795
Partner of
EuDML logo