Previous |  Up |  Next

Article

Title: Several notes on the circumradius condition (English)
Author: Kučera, Václav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 3
Year: 2016
Pages: 287-298
Summary lang: English
.
Category: math
.
Summary: Recently, the so-called circumradius condition (or estimate) was derived, which is a new estimate of the $W^{1,p}$-error of linear Lagrange interpolation on triangles in terms of their circumradius. The published proofs of the estimate are rather technical and do not allow clear, simple insight into the results. In this paper, we give a simple direct proof of the $p=\infty $ case. This allows us to make several observations such as on the optimality of the circumradius estimate. Furthermore, we show how the case of general $p$ is in fact nothing more than a simple scaling of the standard $O(h)$ estimate under the maximum angle condition, even for higher order interpolation. This allows a direct interpretation of the circumradius estimate and condition in the context of the well established theory of the maximum angle condition. (English)
Keyword: finite element method
Keyword: a priori error estimate
Keyword: circumradius condition
Keyword: Lagrange interpolation
MSC: 65D05
MSC: 65N30
idZBL: Zbl 06587853
idMR: MR3502112
DOI: 10.1007/s10492-016-0132-z
.
Date available: 2016-05-19T08:52:26Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145702
.
Reference: [1] Babuška, I., Aziz, A. K.: On the angle condition in the finite element method.SIAM J. Numer. Anal. 13 (1976), 214-226. Zbl 0324.65046, MR 0455462, 10.1137/0713021
Reference: [2] Barnhill, R. E., Gregory, J. A.: Sard kernel theorems on triangular domains with application to finite element error bounds.Numer. Math. 25 (1976), 215-229. Zbl 0304.65076, MR 0458000, 10.1007/BF01399411
Reference: [3] Ciarlet, P. G.: The finite element method for elliptic problems.Studies in Mathematics and Its Applications. Vol. 4 North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174
Reference: [4] Davis, P. J.: Interpolation and Approximation.Dover Books on Advanced Mathematics Dover Publications, New York (1975). Zbl 0329.41010, MR 0380189
Reference: [5] Hannukainen, A., Korotov, S., Křížek, M.: The maximum angle condition is not necessary for convergence of the finite element method.Numer. Math. 120 (2012), 79-88. Zbl 1255.65196, MR 2885598, 10.1007/s00211-011-0403-2
Reference: [6] Jamet, P.: Estimations d'erreur pour des éléments finis droits presque dégénérés.Rev. Franc. Automat. Inform. Rech. Operat. {\it 10}, Analyse numer., R-1, (1976), 43-60 French. MR 0455282
Reference: [7] Kobayashi, K.: On the interpolation constants over triangular elements.RIMS Kokyuroku Japanese 1733 (2011), 58-77.
Reference: [8] Kobayashi, K., Tsuchiya, T.: A Babuška-Aziz type proof of the circumradius condition.Japan. J. Ind. Appl. Math. 31 (2014), 193-210. Zbl 1295.65011, MR 3167084, 10.1007/s13160-013-0128-y
Reference: [9] Kobayashi, K., Tsuchiya, T.: A priori error estimates for Lagrange interpolation on triangles.Appl. Math., Praha 60 (2015), 485-499. Zbl 1363.65015, MR 3396477, 10.1007/s10492-015-0108-4
Reference: [10] K{ř}{í}{ž}ek, M.: On semiregular families of triangulations and linear interpolation.Appl. Math., Praha 36 (1991), 223-232. Zbl 0728.41003, MR 1109126
Reference: [11] Kučera, V.: On necessary and sufficient conditions for finite element convergence.Submitted to Numer. Math. http://arxiv.org/abs/1601.02942 (preprint).
Reference: [12] Rand, A.: Delaunay refinement algorithms for numerical methods.Ph.D. thesis, www.math.cmu.edu/ {arand/papers/arand_thesis.pdf} Carnegie Mellon University (2009). MR 2713254
Reference: [13] Ženíšek, A.: The convergence of the finite element method for boundary value problems of the system of elliptic equations.Apl. Mat. 14 (1969), 355-376 Czech. Zbl 0188.22604, MR 0245978
Reference: [14] Zl{á}mal, M.: On the finite element method.Numer. Math. 12 (1968), 394-409. Zbl 0176.16001, MR 0243753, 10.1007/BF02161362
.

Files

Files Size Format View
AplMat_61-2016-3_3.pdf 284.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo