Previous |  Up |  Next

Article

Title: Some characterizations of harmonic Bloch and Besov spaces (English)
Author: Fu, Xi
Author: Lu, Bowen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 417-430
Summary lang: English
.
Category: math
.
Summary: The relationship between weighted Lipschitz functions and analytic Bloch spaces has attracted much attention. In this paper, we define harmonic $\omega $-$\alpha $-Bloch space and characterize it in terms of $$ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac {f(x)-f(y)}{x-y}\Big | $$ and $$ \omega ((1-|x|^2)^\beta (1-|y|^2)^{\alpha - \beta }) \Big | \frac {f(x)-f(y)}{|x|y-x'}\Big | $$ where $\omega $ is a majorant. Similar results are extended to harmonic little $\omega $-$\alpha $-Bloch and Besov spaces. Our results are generalizations of the corresponding ones in G. Ren, U. Kähler (2005). (English)
Keyword: harmonic function
Keyword: Bloch space
Keyword: Besov space
Keyword: majorant
MSC: 30C20
MSC: 31B05
MSC: 32A18
idZBL: Zbl 06604476
idMR: MR3519611
DOI: 10.1007/s10587-016-0265-y
.
Date available: 2016-06-16T12:50:29Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145733
.
Reference: [1] Chen, S., Ponnusamy, S., Rasila, A.: On characterizations of Bloch-type, Hardy-type and Lipschitz-type spaces.Math. Z. 279 (2015), 163-183. Zbl 1314.30116, MR 3299847, 10.1007/s00209-014-1361-z
Reference: [2] Choe, B. R., Koo, H., Yi, H.: Derivatives of harmonic Bergman and Bloch functions on the ball.J. Math. Anal. Appl. 260 (2001), 100-123. Zbl 0984.31004, MR 1843970, 10.1006/jmaa.2000.7438
Reference: [3] Choi, E. S., Na, K.: Characterizations of the harmonic Bergman space on the ball.J. Math. Anal. Appl. 353 (2009), 375-385. Zbl 1162.31003, MR 2508875, 10.1016/j.jmaa.2008.11.085
Reference: [4] Dyakonov, K. M.: Equivalent norms on Lipschitz-type spaces of holomorphic functions.Acta Math. 178 (1997), 143-167. Zbl 0898.30040, MR 1459259, 10.1007/BF02392692
Reference: [5] Jevtić, M., Pavlović, M.: On $\cal M$-harmonic Bloch space.Proc. Amer. Math. Soc. 123 (1995), 1385-1392. Zbl 0833.32002, MR 1264815, 10.2307/2161125
Reference: [6] Li, S.: Characterizations of Besov spaces in the unit ball.Bull. Korean Math. Soc. 49 (2012), 89-98. Zbl 1239.32006, MR 2931550, 10.4134/BKMS.2012.49.1.089
Reference: [7] Li, S., Stević, S.: Some characterizations of the Besov space and the $\alpha$-Bloch space.J. Math. Anal. Appl. 346 (2008), 262-273. Zbl 1156.32002, MR 2428290, 10.1016/j.jmaa.2008.05.044
Reference: [8] Li, S., Wulan, H.: Characterizations of $\alpha$-Bloch spaces on the unit ball.J. Math. Anal. Appl. 343 (2008), 58-63. Zbl 1204.32006, MR 2409457, 10.1016/j.jmaa.2008.01.023
Reference: [9] Mateljević, M., Vuorinen, M.: On harmonic quasiconformal quasi-isometries.J. Inequal. Appl. 2010 (2010), Article ID 178732, 19 pages. Zbl 1211.30040, MR 2665497
Reference: [10] Nowak, M.: Bloch space and Möbius invariant Besov spaces on the unit ball of $\mathbb C^n$.Complex Variable Theory Appl. 44 (2001), 1-12. MR 1826712, 10.1080/17476930108815339
Reference: [11] Ren, G., Kähler, U.: Weighted Lipschitz continuity and harmonic Bloch and Besov spaces in the real unit ball.Proc. Edinb. Math. Soc., II. Ser. 48 (2005), 743-755. Zbl 1148.42308, MR 2171195, 10.1017/S0013091502000020
Reference: [12] Ren, G., Tu, C.: Bloch space in the unit ball of $\mathbb C^n$.Proc. Am. Math. Soc. 133 (2005), 719-726. MR 2113920, 10.1090/S0002-9939-04-07617-8
Reference: [13] Rudin, W.: Function Theory in the Unit Ball of $\mathbb C^n$.Grundlehren der mathematischen Wissenschaften 241 Springer, New York (1980). MR 0601594
Reference: [14] Üreyen, A. E.: An estimate of the oscillation of harmonic reproducing kernels with applications.J. Math. Anal. Appl. 434 538-553 (2016). Zbl 1358.46035, MR 3404572, 10.1016/j.jmaa.2015.09.030
Reference: [15] Yoneda, R.: A characterization of the harmonic Bloch space and the harmonic Besov spaces by an oscillation.Proc. Edinb. Math. Soc., II. Ser. 45 (2002), 229-239. Zbl 1032.46039, MR 1884614, 10.1017/S001309159900142X
Reference: [16] Yoneda, R.: Characterizations of Bloch space and Besov spaces by oscillations.Hokkaido Math. J. 29 (2000), 409-451. Zbl 0968.46503, MR 1776717, 10.14492/hokmj/1350912980
Reference: [17] Zhao, R.: A characterization of Bloch-type spaces on the unit ball of $\mathbb C^n$.J. Math. Anal. Appl. 330 (2007), 291-297. Zbl 1118.32006, MR 2302923, 10.1016/j.jmaa.2006.06.100
Reference: [18] Zhu, K.: Spaces of Holomorphic Functions in the Unit Ball.Graduate Texts in Mathematics 226 Springer, New York (2005). Zbl 1067.32005, MR 2115155
.

Files

Files Size Format View
CzechMathJ_66-2016-2_10.pdf 268.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo