Previous |  Up |  Next

Article

Title: Principal blocks and $p$-radical groups (English)
Author: Hu, Xiaohan
Author: Zeng, Jiwen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 431-444
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group and $k$ a field of characteristic $p > 0$. In this paper, we obtain several equivalent conditions to determine whether the principal block $B_{0}$ of a finite $p$-solvable group $G$ is $p$-radical, which means that $B_{0}$ has the property that $e_{0} (k_P)^G $ is semisimple as a $kG$-module, where $P$ is a Sylow $p$-subgroup of $G$, $k_{P}$ is the trivial $kP$-module, $(k_{P})^{G}$ is the induced module, and $e_{0}$ is the block idempotent of $B_{0}$. We also give the complete classification of a finite $p$-solvable group $G$ which has not more than three simple $B_{0}$-modules where $B_0$ is $p$-radical. (English)
Keyword: principal block
Keyword: $p$-radical group
Keyword: $p$-radical block
MSC: 20C05
MSC: 20C20
idZBL: Zbl 06604477
idMR: MR3519612
DOI: 10.1007/s10587-016-0266-x
.
Date available: 2016-06-16T12:52:10Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145734
.
Reference: [1] Feit, W.: The Representation Theory of Finite Groups.North-Holland Mathematical Library 25 North-Holland, Amsterdam (1982). Zbl 0493.20007, MR 0661045
Reference: [2] Fong, P.: Solvable groups and modular representation theory.Trans. Am. Math. Soc. 103 (1962), 484-494. Zbl 0105.25603, MR 0139667, 10.1090/S0002-9947-1962-0139667-5
Reference: [3] Fong, P., Gaschütz, W.: A note on the modular representations of solvable groups.J. Reine Angew. Math. 208 (1961), 73-78. Zbl 0100.25801, MR 0138690
Reference: [4] Gorenstein, D.: Finite Groups.Chelsea Publishing Company New York (1980). Zbl 0463.20012, MR 0569209
Reference: [5] Hida, A.: On $p$-radical blocks of finite groups.Proc. Am. Math. Soc. 114 (1992), 37-38. Zbl 0744.20008, MR 1069688
Reference: [6] Huppert, B., Blackburn, N.: Finite Groups II.Grundlehren der Mathematischen Wissenschaften 242 Springer, Berlin (1982). Zbl 0477.20001, MR 0650245
Reference: [7] Huppert, B., Blackburn, N.: Finite Groups III.Grundlehren der Mathematischen Wissenschaften 243 Springer, Berlin (1982). Zbl 0514.20002, MR 0662826, 10.1007/978-3-642-67997-1_1
Reference: [8] Karpilovsky, G.: The Jacobson Radical of Group Algebras.North-Holland Mathematics Studies 135, Notas de Matemática 115 North-Holland, Amsterdam (1987). Zbl 0618.16001, MR 0886889
Reference: [9] Knörr, R.: On the vertices of irreducible modules.Ann. Math. 110 (1979), 487-499. Zbl 0388.20004, MR 0554380, 10.2307/1971234
Reference: [10] Knörr, R.: Semisimplicity, induction, and restriction for modular representations of finite groups.J. Algebra 48 (1977), 347-367. Zbl 0412.20007, MR 0466289, 10.1016/0021-8693(77)90313-1
Reference: [11] Knörr, R.: Blocks, vertices and normal subgroups.Math. Z. 148 (1976), 53-60. Zbl 0308.20013, MR 0401897, 10.1007/BF01187868
Reference: [12] Koshitani, S.: A remark on $p$-radical groups.J. Algebra 134 (1990), 491-496. Zbl 0713.20004, MR 1074339, 10.1016/0021-8693(90)90063-T
Reference: [13] Laradji, A.: A characterization of $p$-radical groups.J. Algebra 188 (1997), 686-691. Zbl 0876.20001, MR 1435380, 10.1006/jabr.1996.6830
Reference: [14] Morita, K.: On group rings over a modular field which possess radicals expressible as principal ideals.Sci. Rep. Tokyo Bunrika Daikagu, Sect. A 4 (1951), 177-194. Zbl 0053.35002, MR 0049909
Reference: [15] Motose, K., Ninomiya, Y.: On the subgroups $H$ of a group $G$ such that $\mathcal{J}(KH)KG\supset$ $\mathcal{J}(KG)$.Math. J. Okayama Univ. 17 (1975), 171-176. MR 0376837
Reference: [16] Nagao, H., Tsushima, Y.: Representations of Finite Groups.Academic Press Boston (1989). Zbl 0673.20002, MR 0998775
Reference: [17] Ninomiya, Y.: Structure of $p$-solvable groups with three $p$-regular classes. II.Math. J. Okayama Univ. 35 (1993), 29-34. Zbl 0826.20012, MR 1329910
Reference: [18] Ninomiya, Y.: Structure of $p$-solvable groups with three $p$-regular classes.Can. J. Math. 43 (1991), 559-579. Zbl 0738.20012, MR 1118010, 10.4153/CJM-1991-034-2
Reference: [19] Okuyama, T.: $p$-radical groups are $p$-solvable.Osaka J. Math. 23 (1986), 467-469. Zbl 0611.20006, MR 0856900
Reference: [20] Okuyama, T.: Module correspondence in finite groups.Hokkaido Math. J. 10 (1981), 299-318. Zbl 0488.20013, MR 0634165, 10.14492/hokmj/1381758078
Reference: [21] Passman, D.: Permutation Groups.Benjamin New York (1968). Zbl 0179.04405, MR 0237627
Reference: [22] Saksonov, A. I.: On the decomposition of a permutation group over a characteristic field.Sov. Math., Dokl. 12 (1971), 786-790. Zbl 0235.20011, MR 0318281
Reference: [23] Tsushima, Y.: On $p$-radical groups.J. Algebra 103 (1986), 80-86. Zbl 0597.16011, MR 0860689, 10.1016/0021-8693(86)90169-9
Reference: [24] Tsushima, Y.: On the second reduction theorem of P. Fong.Kumamoto J. Sci., Math. 13 (1978), 6-14. Zbl 0385.20004, MR 0491921
Reference: [25] Wallace, D. A. R.: On the commutativity of the radical of a group algebra.Proc. Glasg. Math. Assoc. 7 (1965), 1-8. Zbl 0127.01402, MR 0178074, 10.1017/S2040618500035061
Reference: [26] Wallace, D. A. R.: Group algebras with radicals of square zero.Proc. Glasg. Math. Assoc. 5 (1962), 158-159. Zbl 0105.02402, MR 0140568, 10.1017/S2040618500034523
.

Files

Files Size Format View
CzechMathJ_66-2016-2_11.pdf 308.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo