Previous |  Up |  Next

Article

Title: Global existence results for second order neutral functional differential equation with state-dependent delay (English)
Author: Benchohra, Mouffak
Author: Medjadj, Imene
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 169-183
Summary lang: English
.
Category: math
.
Summary: Our aim in this work is to provide sufficient conditions for the existence of global solutions of second order neutral functional differential equation with state-dependent delay. We use the semigroup theory and Schauder's fixed point theorem. (English)
Keyword: neutral functional differential equation of second order
Keyword: mild solution
Keyword: infinite delay
Keyword: state-dependent delay fixed point
Keyword: semigroup theory
Keyword: cosine function
MSC: 34G20
MSC: 34K20
MSC: 34K30
idZBL: Zbl 1374.34299
idMR: MR3513443
DOI: 10.14712/1213-7243.2015.163
.
Date available: 2016-07-05T15:05:27Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145749
.
Reference: [1] Abbas S., Benchohra M.: Advanced Functional Evolution Equations and Inclusions.Springer, Cham, 2015. Zbl 1326.34012, MR 3381102
Reference: [2] Aiello W.G., Freedman H.I., Wu J.: Analysis of a model representing stage-structured population growth with state-dependent time delay.SIAM J. Appl. Math. 52 (1992), 855–869. MR 1163810, 10.1137/0152048
Reference: [3] Anguraj A., Arjunan M.M. Hernández E.: Existence results for an impulsive neutral functional differential equation with state-dependent delay.Appl. Anal. 86 (2007), 861–872. MR 2355543, 10.1080/00036810701354995
Reference: [4] Balachandran K., Anthoni S.M.: Existence of solutions of second order neutral functional differential equations.Tamkang J. Math. 30 (1999), 299–309. MR 1729273
Reference: [5] Bartha M.: Periodic solutions for differential equations with state-dependent delay and positive feedback.Nonlinear Anal. TMA 53 (2003), 839–857. Zbl 1028.34062, MR 1971032
Reference: [6] Benchohra M., Henderson J., Ntouyas S.K.: Existence results for impulsive multivalued semilinear neutral functional differential inclusions in Banach spaces.J. Math. Anal. Appl. 263 (2001), 763–780. Zbl 0998.34064, MR 1866239, 10.1006/jmaa.2001.7663
Reference: [7] Benchohra M., Medjadj I.: Global existence results for neutral functional differential equations with state-dependent delay.Differ. Equ. Dyn. Syst., 24 (2016), 189–200. MR 3486011, 10.1007/s12591-014-0210-1
Reference: [8] Benchohra M., Medjadj I., Nieto J.J., Prakash P.: Global existence for functional differential equations with state-dependent delay.J. Funct. Spaces Appl. 2013, Article ID 863561, 7 pages. Zbl 1292.34061, MR 3132675
Reference: [9] Cao Y., Fan J., Gard T.C.: The effects of state-dependent time delay on a stage-structured population growth model.Nonlinear Anal. TMA 19 (1992), 95–105. Zbl 0777.92014, MR 1174461
Reference: [10] Corduneanu C.: Integral Equations and Stability of Feedback Systems.Academic Press, New York, 1973. Zbl 0273.45001, MR 0358245
Reference: [11] Hartung F.: Parameter estimation by quasilinearization in functional differential equations state-dependent delays: a numerical study.Proceedings of the Third World Congress of Nonlinear Analysts, Part 7 (Catania, 2000), Nonlinear Anal. TMA 47 (2001), 4557–4566. MR 1975850
Reference: [12] Domoshnitsky A., Drakhlin M., Litsyn E.: On equations with delay depending on solution.Nonlinear Anal. TMA 49 (2002), 689–701. Zbl 1012.34066, MR 1894304
Reference: [13] Hartung F., Turi J.: Identification of parameters in delay equations with state-dependent lays.Nonlinear Anal. TMA 29 (1997), 1303–1318. MR 1472420
Reference: [14] Hartung F., Herdman T.L., Turi J.: Parameter identification in classes of neutral differential equations with state-dependent delays.Nonlinear Anal. TMA 39 (2000), 305–325. Zbl 0955.34067, MR 1722822
Reference: [15] Fattorini H.O.: Second Order Linear Differential Equations in Banach Spaces.North-Holland Mathematics Studies, 108, North-Holland, Amsterdam, 1985. Zbl 0564.34063, MR 0797071
Reference: [16] Granas A., Dugundji J.: Fixed Point Theory.Springer, New York, 2003. Zbl 1025.47002, MR 1987179
Reference: [17] Hale J., Kato J.: Phase space for retarded equations with infinite delay.Funkcial. Ekvac. 21 (1978), 11–41. Zbl 0383.34055, MR 0492721
Reference: [18] Hernández E.: Existence of solutions for a second order abstract functional differential equation with state-dependent delay.Electron. J. Differential Equations 21 (2007), 1–10. Zbl 1113.47061
Reference: [19] Hernández E., McKibben M.: On state-dependent delay partial neutral functional differential equations.Appl. Math. Comput. 186 (2007), 294–301. Zbl 1119.35106, MR 2316515, 10.1016/j.amc.2006.07.103
Reference: [20] Hernández E., Pierri M., Uniáo G.: Existence results for an impulsive abstract partial differential equation with state-dependent delay.Comput. Math. Appl. 52 (2006), 411–420. 10.1016/j.camwa.2006.03.022
Reference: [21] Hernández E., Sakthivel R., Tanaka S.: Existence results for impulsive evolution differential equations with state-dependent delay.Electron. J. Differential Equations 28 (2008), 1–11. Zbl 1133.35101, MR 2390434
Reference: [22] Hino Y., Murakami S., Naito T.: Functional Differential Equations with Unbounded Delay.Springer, Berlin, 1991. MR 1122588
Reference: [23] Kisynski J.: On cosine operator functions and one parameter group of operators.Studia Math. 49 (1972), 93–105. MR 0312328, 10.4064/sm-44-1-93-105
Reference: [24] Kozak M.: A fundamental solution of a second order differential equation in Banach space.Univ. Iagel. Acta Math. 32 (1995), 275–289. MR 1345144
Reference: [25] Li W.-S., Chang Y.-K., Nieto J.J.: Solvability of impulsive neutral evolution differential inclusions with state-dependent delay.Math. Comput. Modelling 49 (2009), 1920–1927. MR 2532098, 10.1016/j.mcm.2008.12.010
Reference: [26] Ntouyas S.K.: Global existence results for certain second order delay integrodifferential equations with nonlocal conditions.Dynam. Systems Appl. 7 (1998), 415–425. Zbl 0914.35148, MR 1639604
Reference: [27] Ntouyas S.K., Tsamatos P.Ch.: Global existence for second order semilinear ordinary and delay integrodifferential equations with nonlocal conditions.Appl. Anal. 67 (1997), 245–257. Zbl 0906.35110, MR 1614061, 10.1080/00036819708840609
Reference: [28] Rezounenko A.: Partial differential equations with discrete and distributed state-dependent delays.J. Math. Anal. Appl. 326 (2007), 1031–1045. Zbl 1178.35370, MR 2280961, 10.1016/j.jmaa.2006.03.049
Reference: [29] Rezounenko A., Wu J.: A non-local PDE model for population dynamics with state-selective delay: local theory and global attractors.J. Comput. Appl. Math. 190 (2006), 99–113. MR 2209496, 10.1016/j.cam.2005.01.047
Reference: [30] Si J.-G., Wang X.P.: Analytic solutions of a second-order functional differential equation with a state dependent delay.Results Math. 39 (2001), 345–352. MR 1834580, 10.1007/BF03322694
Reference: [31] Travis C.C., Webb G.F.: Compactness, regularity, and uniform continuity properties of strongly continuous cosine families.Houston J. Math. 3 (1977), 555–567. Zbl 0386.47024, MR 0500288
Reference: [32] Travis C.C., Webb G.F.: Cosine families and abstract nonlinear second order differential equations.Acta Math. Acad. Sci. Hungar. 32 (1978), 76–96. Zbl 0388.34039, MR 0499581, 10.1007/BF01902205
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_4.pdf 293.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo