Previous |  Up |  Next

Article

Title: A note on the commutator of two operators on a locally convex space (English)
Author: Kramar, Edvard
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 2
Year: 2016
Pages: 163-168
Summary lang: English
.
Category: math
.
Summary: Denote by $C$ the commutator $AB-BA$ of two bounded operators $A$ and $B$ acting on a locally convex topological vector space. If $AC-CA=0$, we show that $C$ is a quasinilpotent operator and we prove that if $AC-CA$ is a compact operator, then $C$ is a Riesz operator. (English)
Keyword: locally convex space
Keyword: commutator
Keyword: nilpotent operator
Keyword: compact operator
Keyword: Riesz operator
MSC: 46A03
MSC: 47B06
MSC: 47B47
idZBL: Zbl 06604499
idMR: MR3513442
DOI: 10.14712/1213-7243.2015.155
.
Date available: 2016-07-05T15:03:05Z
Last updated: 2018-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145758
.
Reference: [1] Bonsall F.F., Duncan J.: Complete Normed Algebras.Springer, New York-Heidelberg-Berlin, 1973. Zbl 0271.46039, MR 0423029
Reference: [2] Chilana A.K.: Invariant subspaces for linear operators in locally convex spaces.J. London Math. Soc. 2 (1970), 493–503. Zbl 0198.45703, MR 0423095, 10.1112/jlms/2.Part_3.493
Reference: [3] Bračič J., Kuzma B.: Localizations of the Kleinecke-Shirokov Theorem.Oper. Matrices 1 (2007), 385–389. Zbl 1136.47025, MR 2344682, 10.7153/oam-01-22
Reference: [4] de Bruyn G.F.C.: Asymptotic properties of linear operators.Proc. London Math. Soc. 18 (1968), 405–427. Zbl 0172.16801, MR 0226442, 10.1112/plms/s3-18.3.405
Reference: [5] Kramar E.: On reducibility of sets of algebraic operators on locally convex spaces.Acta Sci. Math. (Szeged) 74 (2008), 729–742. Zbl 1199.47037, MR 2487942
Reference: [6] Lin C.S.: A note on the Kleinecke-Shirokov theorem and the Wintner-Halmos theorem.Proc. Amer. Math. Soc. 27 (1971), 529–530. MR 0284846, 10.1090/S0002-9939-1971-0284846-0
Reference: [7] Pietsch A.: Zur Theorie der $\sigma $-Transformationen in lokalkonvexen Vektorräumen.Math. Nachr. 21 (1960), 347–369. Zbl 0095.30903, MR 0123185, 10.1002/mana.19600210604
Reference: [8] Ruston A.F.: Operators with a Fredholm theory.J. London Math. Soc. 29 (1954), 318–326. Zbl 0055.10902, MR 0062345, 10.1112/jlms/s1-29.3.318
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-2_3.pdf 242.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo