Previous |  Up |  Next

Article

Keywords:
locally convex space; commutator; nilpotent operator; compact operator; Riesz operator
Summary:
Denote by $C$ the commutator $AB-BA$ of two bounded operators $A$ and $B$ acting on a locally convex topological vector space. If $AC-CA=0$, we show that $C$ is a quasinilpotent operator and we prove that if $AC-CA$ is a compact operator, then $C$ is a Riesz operator.
References:
[1] Bonsall F.F., Duncan J.: Complete Normed Algebras. Springer, New York-Heidelberg-Berlin, 1973. MR 0423029 | Zbl 0271.46039
[2] Chilana A.K.: Invariant subspaces for linear operators in locally convex spaces. J. London Math. Soc. 2 (1970), 493–503. DOI 10.1112/jlms/2.Part_3.493 | MR 0423095 | Zbl 0198.45703
[3] Bračič J., Kuzma B.: Localizations of the Kleinecke-Shirokov Theorem. Oper. Matrices 1 (2007), 385–389. DOI 10.7153/oam-01-22 | MR 2344682 | Zbl 1136.47025
[4] de Bruyn G.F.C.: Asymptotic properties of linear operators. Proc. London Math. Soc. 18 (1968), 405–427. DOI 10.1112/plms/s3-18.3.405 | MR 0226442 | Zbl 0172.16801
[5] Kramar E.: On reducibility of sets of algebraic operators on locally convex spaces. Acta Sci. Math. (Szeged) 74 (2008), 729–742. MR 2487942 | Zbl 1199.47037
[6] Lin C.S.: A note on the Kleinecke-Shirokov theorem and the Wintner-Halmos theorem. Proc. Amer. Math. Soc. 27 (1971), 529–530. DOI 10.1090/S0002-9939-1971-0284846-0 | MR 0284846
[7] Pietsch A.: Zur Theorie der $\sigma $-Transformationen in lokalkonvexen Vektorräumen. Math. Nachr. 21 (1960), 347–369. DOI 10.1002/mana.19600210604 | MR 0123185 | Zbl 0095.30903
[8] Ruston A.F.: Operators with a Fredholm theory. J. London Math. Soc. 29 (1954), 318–326. DOI 10.1112/jlms/s1-29.3.318 | MR 0062345 | Zbl 0055.10902
Partner of
EuDML logo