Previous |  Up |  Next

Article

Title: Impulsive stabilization and synchronization of uncertain financial hyperchaotic systems (English)
Author: Zheng, Song
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 2
Year: 2016
Pages: 241-257
Summary lang: English
.
Category: math
.
Summary: In this paper the issue of impulsive stabilization and synchronization of uncertain financial hyperchaotic systems with parameters perturbation is investigated. Applying the impulsive control theory, some less conservative and easily verified criteria for the stabilization and synchronization of financial hyperchaotic systems are derived. The control gains and impulsive intervals can be variable. Moreover, the boundaries of the stable region are also estimated according to the equidistant impulse interval. Theoretical analysis and numerical simulations are shown to demonstrate the validity and feasibility of the proposed method. (English)
Keyword: financial hyperchaotic system
Keyword: impulse
Keyword: stabilization
Keyword: synchronization
MSC: 34C15
MSC: 34D06
MSC: 34D35
idZBL: Zbl 1374.34240
idMR: MR3501160
DOI: 10.14736/kyb-2016-2-0241
.
Date available: 2016-07-17T12:04:10Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145773
.
Reference: [1] Abd-Elouahab, M., Hamri, N., Wang, J.: Chaos control of a fractional-order financial system..Math. Problems Engrg. 2010 (2010), 1-18. Zbl 1195.91185, 10.1155/2010/270646
Reference: [2] Agiza, H. N.: Chaos synchronization of Lü dynamical system..Nonlinear Anal. 58 (2004), 11-20. Zbl 1057.34042, MR 2070803, 10.1016/j.na.2004.04.002
Reference: [3] Cai, G., Yao, L., Hu, P., Fang, X.: Adaptive full state hybrid function projective synchronization of financial hyperchaotic systems with uncertain parameters..Discrete and Continuous Dynamical Systems - Ser. B 18 (2013), 2019-2028. Zbl 1283.34051, MR 3082308, 10.3934/dcdsb.2013.18.2019
Reference: [4] Cai, G., Zhang, L., Yao., L., Fang, X.: Modified function projective synchronization of financial hyperchaotic systems via adaptive impulsive controller with unknown parameters..Discrete Dynamics in Nature and Society 2015 (2015), 1-11. 10.1155/2015/572735
Reference: [5] Carroll, T. L., Pecora, L. M.: Synchronizing chaotic circuits..IEEE Trans. Circuits Syst. I 38 (1991), 453-456. Zbl 1058.37538, 10.1109/31.75404
Reference: [6] Chen, Y. S., Hwang, R. R., Chang, C. C.: Adaptive impulsive synchronization of uncertain chaotic systems..Phys. Lett. A 374 (2010), 2254-2258. Zbl 1237.34099, 10.1016/j.physleta.2010.03.046
Reference: [7] Deissenberg, C.: Optimal control of linear econometric models with intermittent controls..Econ. Plan. 16 (1980), 49-56. Zbl 0466.90018, 10.1007/bf00351465
Reference: [8] Ding, J., Yang, W., Yao, H.: A new modified hyperchaotic finance system and its control..Int. J. Nonlinear Sci. 8 (2009), 59-66. Zbl 1179.37124, MR 2557980
Reference: [9] Fanti, L., Manfredi, P.: Chaotic business cycles and fiscal policy: an IS-LM model with distributed tax collection lags..Chaos Solitons Fractals 32 (2007), 736-744. Zbl 1133.91482, MR 2280116, 10.1016/j.chaos.2005.11.024
Reference: [10] Han, Q. L.: New delay-dependent synchronization criteria for Lur'e systems using time delay feedback control..Phys. Lett. A 360 (2007), 563-569. Zbl 1236.93072, 10.1016/j.physleta.2006.08.076
Reference: [11] Itoh, M., Yang, T., Chua, L. O.: Experimental study of impulsive synchronization of chaotic and hyperchaotic circuits..Int. J. Bifurc. Chaos 9 (1999), 1393-1424. Zbl 0963.34029, 10.1142/s0218127499000961
Reference: [12] Itoh, M., Yang, T., L., Chua, O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems..Int. J. Bifurc. Chaos 11 (2001), 551-560. MR 1830352, 10.1142/s0218127401002262
Reference: [13] Lakshmikantham, V., Bainov, D. D., Simeonov, P. S.: Theory of Impulsive Differential Equations..World Scientific, Singapore 1989. Zbl 0719.34002, MR 1082551, 10.1142/0906
Reference: [14] Ma, J., Zhang, Q., Gao, Q.: Stability of a three-species symbiosis model with delays..Nonlinear Dynam. 67 (2012), 567-572. Zbl 1242.92059, MR 2869224, 10.1007/s11071-011-0009-3
Reference: [15] Mainieri, R., Rehacek, J.: Projective synchronization in three-dimensioned chaotic systems..Phys. Rev. Lett. 82 (1999), 3042-3045. 10.1103/physrevlett.82.3042
Reference: [16] Nik, H. S., He, P., Talebian, S. T.: Optimal, adaptive and single state feedback control for a 3D chaotic system with golden proportion equilibria..Kybernetika 50 (2014), 596-615. Zbl 1310.34089, MR 3275087, 10.14736/kyb-2014-4-0596
Reference: [17] Park, Ju. H.: Chaos synchronization of a chaotic system via nonlinear control..Chaos Solitons Fractals 25 (2005), 579-584. Zbl 1092.37514, 10.1016/j.chaos.2004.11.038
Reference: [18] Pecora, L. M., Carroll, T. L.: Synchronization in chaotic systems..Phys. Rev. Lett. 64 (1990), 821-824. Zbl 1098.37553, MR 1038263, 10.1103/physrevlett.64.821
Reference: [19] Rosenblum, M. G., Pikovsky, A. S., Kurths, J.: Phase synchronization of chaotic oscillators..Phys. Rev. Lett. 76 (1996), 1804-1807. Zbl 0898.70015, 10.1103/physrevlett.76.1804
Reference: [20] Sasakura, K.: On the dynamic behavior of Schinasi's business cycle model..J. Macroeconom. 16 (1994), 423-444. 10.1016/0164-0704(94)90015-9
Reference: [21] Strotz, R., McAnulty, J., Naines, J.: Goodwin's nonlinear theory of the business cycle: an electro-analog solution..Econometrica 21 (1953), 390-411. Zbl 0050.36804, 10.2307/1905446
Reference: [22] Wang, Z. L.: Anti-synchronization in two non-identical hyperchaotic systems with known or unknown parameters..Commun. Nonlinear Sci. Numer. Simulat. 14 (2009), 2366-2372. 10.1016/j.cnsns.2008.06.027
Reference: [23] Yang, T.: Impulsive Control Theory..Springer-Verlag, Berlin 2001. Zbl 0996.93003, MR 1850661, 10.1007/3-540-47710-1
Reference: [24] Yang, T.: Impulsive control..IEEE Trans. Automat. Control 44 (1999), 1081-1083. Zbl 1335.93013, MR 1690562, 10.1109/9.763234
Reference: [25] Yang, T., Chua, L. O.: Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication..IEEE Trans. Circuits Syst. I 44 (1997), 976-988. MR 1488197, 10.1109/81.633887
Reference: [26] Yang, T., Yang, L. B., Yang, C. M.: Impulsive control of Lorenz system..Physica D 110 (1997), 18-24. Zbl 0925.93414, MR 1490790, 10.1016/s0167-2789(97)00116-4
Reference: [27] Yang, T., Yang, L. B., Yang, C. M.: Impulsive synchronization of Lorenz systems..Phys. Lett. A 226 (1997), 349-354. 10.1016/s0375-9601(97)00004-2
Reference: [28] Yu, H., Cai, G., Li, Y.: Dynamic analysis and control of a new hyperchaotic finance system..Nonlinear Dynam. 67 (2012), 2171-2182. Zbl 1242.91225, MR 2877475, 10.1007/s11071-011-0137-9
Reference: [29] Ma, M., Zhang, H., Cai, J., Zhou, J.: Impulsive practical synchronization of n-dimensional nonautonomous systems..Kybernetika 49 (2013), 539-553. Zbl 1274.70039, MR 3117913
Reference: [30] Zhao, M., Wang, J.: $H_\infty$ control of a chaotic finance system in the presence of external disturbance and input time-delay..Appl. Math. Comput. 233 (2014), 320-327. Zbl 1335.91123, MR 3214985, 10.1016/j.amc.2013.12.085
Reference: [31] Zheng, S.: Parameter identification and adaptive impulsive synchronization of uncertain complex-variable chaotic systems..Nonlinear Dynam. 74 (2013), 957-967. Zbl 1306.34069, MR 3127104, 10.1007/s11071-013-1015-4
Reference: [32] Zheng, J., Du, B.: Projective synchronization of hyperchaotic financial systems..Discrete Dynamics in Nature and Society 2015 (2015), 1-9. MR 3303289, 10.1155/2015/782630
.

Files

Files Size Format View
Kybernetika_52-2016-2_4.pdf 969.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo