[2] Artemchuk, I., Nurges, Ü., Belikov, J.: Robust pole assignment via Routh rays of polynomials. In: American Control Conference, Boston 2016, pp. 7031-7036.
[3] Artemchuk, I., Nurges, Ü., Belikov, J., Kaparin, V.:
Stable cones of polynomials via Routh rays. In: 20th International Conference on Process Control, Štrbské Pleso 2015, pp. 255-260.
DOI 10.1109/pc.2015.7169972
[4] Bhattacharyya, S. P., Chapellat, H., Keel, L. H.:
Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River, New Jersy 1995.
Zbl 0838.93008
[6] Chapellat, H., Mansour, M., Bhattacharyya, S. P.:
Elementary proofs of some classical stability criteria. Trans. Ed. 33 (1990), 232-239.
DOI 10.1109/13.57067
[9] Henrion, D., Peaucelle, D., Arzelier, D., Šebek, M.:
Ellipsoidal approximation of the stability domain of a polynomial. Trans. Automat. Control 48 (2003), 2255-2259.
DOI 10.1109/tac.2003.820161 |
MR 2027255
[12] Kharitonov, V. L.:
Asymptotic stability of an equilibrium position of a family of systems of linear differential equations. Differ. Equations 14 (1979), 1483-1485.
MR 0516709 |
Zbl 0409.34043
[13] Nise, N. S.: Control Systems Engineering. John Wiley and Sons, Jefferson City 2010.
[16] Nurges, Ü., Artemchuk, I., Belikov, J.:
Generation of stable polytopes of Hurwitz polynomials via Routh parameters. In: 53rd IEEE Conference on Decision and Control, Los Angeles 2014, pp. 2390-2395.
DOI 10.1109/cdc.2014.7039753
[18] Rahman, Q. I., Schmeisser, G.:
Analytic Theory of Polynomials: Critical Points, Zeros and Extremal Properties. Oxford University Press, London 2002.
MR 1954841
[21] Tsoi, A. C.:
Inverse Routh-Hurwitz array solution to the inverse stability problem. Electron. Lett. 15 (1979), 575-576.
DOI 10.1049/el:19790413
[23] Zadeh, L. A., Desoer, C. A.:
Linear System Theory: The State Space Approach. MacGraw-Hill, New York 1963.
Zbl 1153.93302