Title:
|
Zonoids with an equatorial characterization (English) |
Author:
|
Aramyan, Rafik |
Language:
|
English |
Journal:
|
Applications of Mathematics |
ISSN:
|
0862-7940 (print) |
ISSN:
|
1572-9109 (online) |
Volume:
|
61 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
413-422 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid belongs to the class. (English) |
Keyword:
|
integral geometry |
Keyword:
|
convex body |
Keyword:
|
zonoid |
Keyword:
|
support function |
MSC:
|
52A15 |
MSC:
|
53C45 |
MSC:
|
53C65 |
idZBL:
|
Zbl 06644004 |
idMR:
|
MR3532251 |
DOI:
|
10.1007/s10492-016-0139-5 |
. |
Date available:
|
2016-08-01T09:24:15Z |
Last updated:
|
2020-07-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145793 |
. |
Reference:
|
[1] Aramyan, R. H.: Reconstruction of centrally symmetric convex bodies in ${\mathbb R}^n$.Bul. Acad. Ştiinţe Repub. Mold., Mat. 65 (2011), 28-32. MR 2849225 |
Reference:
|
[2] Aramyan, R. H.: Measures in the space of planes and convex bodies.J. Contemp. Math. Anal., Armen. Acad. Sci. 47 78-85 (2012), translation from Izv. Nats. Akad. Nauk Armen., Mat. 47 19-30 Russian (2012). Zbl 1302.53082, MR 3287915 |
Reference:
|
[3] Goodey, P., Weil, W.: Zonoids and generalisations.Handbook of Convex Geometry, Vol. A, B North-Holland, Amsterdam 1297-1326 (1993), P. M. Gruber et al. 1297-1326. Zbl 0791.52006, MR 1243010, 10.1016/B978-0-444-89597-4.50020-2 |
Reference:
|
[4] Leichtweiss, K.: Konvexe Mengen.Hochschulbücher für Mathematik 81 VEB Deutscher Verlag der Wissenschaften, Berlin (1980), German. Zbl 0442.52001, MR 0586235 |
Reference:
|
[5] Nazarov, F., Ryabogin, D., Zvavitch, A.: On the local equatorial characterization of zonoids and intersection bodies.Adv. Math. 217 (2008), 1368-1380. Zbl 1151.52002, MR 2383902, 10.1016/j.aim.2007.08.013 |
Reference:
|
[6] Panina, G. Yu.: Representation of an $n$-dimensional body in the form of a sum of $(n-1)$-dimensional bodies.Izv. Akad. Nauk Arm. SSR, Mat. 23 (1988), 385-395 Russian translation in Sov. J. Contemp. Math. Anal. 23 (1988), 91-103. Zbl 0679.52006, MR 0997401 |
Reference:
|
[7] Schneider, R.: Über eine Integralgleichung in der Theorie der konvexen Körper.Math. Nachr. 44 (1970), 55-75 German. Zbl 0162.54302, MR 0275286, 10.1002/mana.19700440105 |
Reference:
|
[8] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1993). Zbl 0798.52001, MR 1216521 |
Reference:
|
[9] Schneider, R., Weil, W.: Zonoids and Related Topics.Convexity and Its Applications Birkhäuser, Basel (1983), 296-317. Zbl 0524.52002, MR 0731116 |
Reference:
|
[10] Weil, W.: Blaschkes Problem der lokalen Charakterisierung von Zonoiden.Arch. Math. 29 (1977), 655-659 German. Zbl 0382.52006, MR 0513967, 10.1007/BF01220469 |
. |