Previous |  Up |  Next

Article

Title: Zonoids with an equatorial characterization (English)
Author: Aramyan, Rafik
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 4
Year: 2016
Pages: 413-422
Summary lang: English
.
Category: math
.
Summary: It is known that a local equatorial characterization of zonoids does not exist. The question arises: Is there a subclass of zonoids admitting a local equatorial characterization. In this article a sufficient condition is found for a centrally symmetric convex body to be a zonoid. The condition has a local equatorial description. Using the condition one can define a subclass of zonoids admitting a local equatorial characterization. It is also proved that a convex body whose boundary is an ellipsoid belongs to the class. (English)
Keyword: integral geometry
Keyword: convex body
Keyword: zonoid
Keyword: support function
MSC: 52A15
MSC: 53C45
MSC: 53C65
idZBL: Zbl 06644004
idMR: MR3532251
DOI: 10.1007/s10492-016-0139-5
.
Date available: 2016-08-01T09:24:15Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145793
.
Reference: [1] Aramyan, R. H.: Reconstruction of centrally symmetric convex bodies in ${\mathbb R}^n$.Bul. Acad. Ştiinţe Repub. Mold., Mat. 65 (2011), 28-32. MR 2849225
Reference: [2] Aramyan, R. H.: Measures in the space of planes and convex bodies.J. Contemp. Math. Anal., Armen. Acad. Sci. 47 78-85 (2012), translation from Izv. Nats. Akad. Nauk Armen., Mat. 47 19-30 Russian (2012). Zbl 1302.53082, MR 3287915
Reference: [3] Goodey, P., Weil, W.: Zonoids and generalisations.Handbook of Convex Geometry, Vol. A, B North-Holland, Amsterdam 1297-1326 (1993), P. M. Gruber et al. 1297-1326. Zbl 0791.52006, MR 1243010, 10.1016/B978-0-444-89597-4.50020-2
Reference: [4] Leichtweiss, K.: Konvexe Mengen.Hochschulbücher für Mathematik 81 VEB Deutscher Verlag der Wissenschaften, Berlin (1980), German. Zbl 0442.52001, MR 0586235
Reference: [5] Nazarov, F., Ryabogin, D., Zvavitch, A.: On the local equatorial characterization of zonoids and intersection bodies.Adv. Math. 217 (2008), 1368-1380. Zbl 1151.52002, MR 2383902, 10.1016/j.aim.2007.08.013
Reference: [6] Panina, G. Yu.: Representation of an $n$-dimensional body in the form of a sum of $(n-1)$-dimensional bodies.Izv. Akad. Nauk Arm. SSR, Mat. 23 (1988), 385-395 Russian translation in Sov. J. Contemp. Math. Anal. 23 (1988), 91-103. Zbl 0679.52006, MR 0997401
Reference: [7] Schneider, R.: Über eine Integralgleichung in der Theorie der konvexen Körper.Math. Nachr. 44 (1970), 55-75 German. Zbl 0162.54302, MR 0275286, 10.1002/mana.19700440105
Reference: [8] Schneider, R.: Convex Bodies: the Brunn-Minkowski Theory.Encyclopedia of Mathematics and Its Applications 44 Cambridge University Press, Cambridge (1993). Zbl 0798.52001, MR 1216521
Reference: [9] Schneider, R., Weil, W.: Zonoids and Related Topics.Convexity and Its Applications Birkhäuser, Basel (1983), 296-317. Zbl 0524.52002, MR 0731116
Reference: [10] Weil, W.: Blaschkes Problem der lokalen Charakterisierung von Zonoiden.Arch. Math. 29 (1977), 655-659 German. Zbl 0382.52006, MR 0513967, 10.1007/BF01220469
.

Files

Files Size Format View
AplMat_61-2016-4_4.pdf 249.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo