Previous |  Up |  Next

Article

Title: On Metrizable Locally Homogeneous Connections in Dimension (English)
Author: Vanžurová, Alena
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 1
Year: 2016
Pages: 157-166
Summary lang: English
.
Category: math
.
Summary: We discuss metrizability of locally homogeneous affine connections on affine 2-manifolds and give some partial answers, using the results from [Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds. Monatsh. Math. 153 (2008), 1–18.], [Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach. CEJM 2, 1 (2004), 87–102.], [Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds. Arch. Math. (Brno) 49 (2013), 199–209.], [Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170.]. (English)
Keyword: Manifold
Keyword: affine connection
Keyword: Riemannian connection
Keyword: Lorentzian connection
Keyword: Killing vector field
Keyword: locally homogeneous space
MSC: 53B05
MSC: 53B20
idZBL: Zbl 1372.53016
idMR: MR3674609
.
Date available: 2016-08-30T12:08:08Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145826
.
Reference: [1] Arias-Marco, T., Kowalski, O.: Classification of locally homogeneous affine connections with arbitrary torsion on 2-dimensional manifolds.. Monatsh. Math. 153 (2008), 1–18. Zbl 1155.53009, MR 2366132, 10.1007/s00605-007-0494-0
Reference: [2] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry I, II.. Wiley-Intersc. Publ., New York, Chichester, Brisbane, Toronto, Singapore, 1991.
Reference: [3] Kowalski, O., Opozda, B., Vlášek, Z.: Curvature homogeneity of affine connections on two-dimensional manifolds.. Coll. Math. 81, 1 (1999), 123–139. Zbl 0942.53019, MR 1716190, 10.4064/cm-81-1-123-139
Reference: [4] Kowalski, O., Opozda, B., Vlášek, Z.: A Classification of Locally Homogeneous Affine Connections with Skew-Symmetric Ricci Tensor on 2-Dimensional Manifolds.. Monatsh. Math. 130 (2000), 109–125. Zbl 0993.53008, MR 1767180, 10.1007/s006050070041
Reference: [5] Kowalski, O., Opozda, B., Vlášek, Z.: A classification of locally homogeneous connections on 2-dimensional manifolds vis group-theoretical approach.. CEJM 2, 1 (2004), 87–102. MR 2041671
Reference: [6] Mikeš, J., Stepanova, E., Vanžurová, A.: Differential Geometry of Special Mappings.. Palacký University, Olomouc, 2015. Zbl 1337.53001, MR 3442960
Reference: [7] Mikeš, J., Vanžurová, A., Hinterleitner, I.: Geodesic Mappings and Some Generalizations.. Palacký University, Olomouc, 2009. Zbl 1222.53002, MR 2682926
Reference: [8] Olver, P. J.: Equivalence, Invariants and Symmetry.. Cambridge Univ. Press, Cambridge, 1995. Zbl 0837.58001, MR 1337276
Reference: [9] Opozda, B.: A classification of locally homogeneous connections on 2-dimensional manifolds.. Diff. Geom. Appl. 21 (2004), 173–198. Zbl 1063.53024, MR 2073824, 10.1016/j.difgeo.2004.03.005
Reference: [10] Singer, I. M.: Infinitesimally homogeneous spaces.. Comm. Pure Appl. Math. 13 (1960), 685–697. Zbl 0171.42503, MR 0131248, 10.1002/cpa.3160130408
Reference: [11] Vanžurová, A., Žáčková, P.: Metrization of linear connections.. Aplimat, J. of Applied Math. (Bratislava) 2, 1 (2009), 151–163.
Reference: [12] Vanžurová, A., Žáčková, P.: Metrizability of connections on two-manifolds.. Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 48 (2009), 157–170. Zbl 1195.53023, MR 2641956
Reference: [13] Vanžurová, A.: On metrizability of locally homogeneous affine connections on 2-dimensional manifolds.. Arch. Math. (Brno) 49 (2013), 199–209. MR 3159333
Reference: [14] Vanžurová, A.: On metrizability of a class of 2-manifolds with linear connection.. Miskolc Math. Notes 14, 3 (2013), 311–317. Zbl 1299.53034, MR 3144100
.

Files

Files Size Format View
ActaOlom_55-2016-1_17.pdf 312.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo