Previous |  Up |  Next

Article

Title: On skew derivations as homomorphisms or anti-homomorphisms (English)
Author: Raza, Mohd Arif
Author: Rehman, Nadeem ur
Author: Huang, Shuliang
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 271-278
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a prime ring with center $Z$ and $I$ be a nonzero ideal of $R$. In this manuscript, we investigate the action of skew derivation $(\delta,\varphi)$ of $R$ which acts as a homomorphism or an anti-homomorphism on $I$. Moreover, we provide an example for semiprime case. (English)
Keyword: skew derivation
Keyword: generalized polynomial identity (GPI)
Keyword: prime ring
Keyword: ideal
MSC: 16N60
MSC: 16R50
MSC: 16W25
idZBL: Zbl 06674878
idMR: MR3554508
DOI: 10.14712/1213-7243.2015.157
.
Date available: 2016-09-22T15:18:47Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145831
.
Reference: [1] Asma A., Rehman N., Ali S.: On Lie ideals with derivations as homomorphisms and anti-homomorphisms.Acta Math. Hungar. 101 (2003), 79–82. MR 2011464, 10.1023/B:AMHU.0000003893.61349.98
Reference: [2] Beidar K.I., Martindale W.S.III, Mikhalev A.V.: Rings with Generalized Identities.Pure and Applied Mathematics, 196, Marcel Dekker, New York, 1996. Zbl 0847.16001, MR 1368853
Reference: [3] Bell H.E., Kappe L.C.: Rings in which derivations satisfy certain algebraic conditions.Acta Math. Hungar. 53 (1989), 339–346. Zbl 0705.16021, MR 1014917, 10.1007/BF01953371
Reference: [4] Dhara B.: Generalized derivations acting as a homomorphism or anti-homomorphism in semiprime rings.Beitr. Algebra Geom. 53 (2012), no. 1, 203–209. Zbl 1242.16039, MR 2890375, 10.1007/s13366-011-0051-9
Reference: [5] Chuang C.L.: GPIs having coefficients in Utumi quotient rings.Proc. Amer. Math. Soc. 103 (1988), no. 3, 723–728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4
Reference: [6] Chuang C.L.: Differential identities with automorphism and anti-automorphism-II.J. Algebra 160 (1993), 291–335. MR 1237081, 10.1006/jabr.1993.1181
Reference: [7] Chuang C.L., Lee T.K.: Identities with a single skew derivation.J. Algebra 288 (2005), 59–77. Zbl 1073.16021, MR 2138371, 10.1016/j.jalgebra.2003.12.032
Reference: [8] Eremita D., Ilisvic D.: On (anti-) multiplicative generalized derivations.Glas. Mat. Ser. III 47 (2012) no. 67, 105–118. MR 2942778, 10.3336/gm.47.1.08
Reference: [9] Erickson T.S., Martindale W.S.3rd., Osborn J.M.: Prime nonassociative algebras.Pacific. J. Math. 60 (1975), 49–63. Zbl 0355.17005, MR 0382379, 10.2140/pjm.1975.60.49
Reference: [10] Gusic I.: A note on generalized derivations of prime rings.Glas. Mat. 40 (2005), 47–49. Zbl 1072.16031, MR 2195859, 10.3336/gm.40.1.05
Reference: [11] Jacobson N.: Structure of Rings.Amer. Math. Soc. Colloq. Pub., 37, Providence, Rhode Island, 1964. Zbl 0098.25901, MR 0222106
Reference: [12] Kharchenko V.K., Popov A.Z.: Skew derivations of prime rings.Comm. Algebra 20 (1992), 3321–3345. Zbl 0783.16012, MR 1186710, 10.1080/00927879208824517
Reference: [13] Kharchenko V.K.: Generalized identities with automorphisms.Algebra i Logika 14 (1975), no. 2, 132–148. Zbl 0382.16009, MR 0399153, 10.1007/BF01668425
Reference: [14] Lanski C.: An Engel condition with derivation.Proc. Amer. Math. Soc. 118 (1993), 75–80. Zbl 0869.16027, MR 1132851, 10.1090/S0002-9939-1993-1132851-9
Reference: [15] Lee P.H., Wong T.L.: Derivations cocentralizing Lie ideals.Bull. Inst. Math. Acad. Sin. 23 (1995), no. 1–5. Zbl 0827.16025, MR 1319474
Reference: [16] Rehman N.: On generalized derivations as homomorphism and anti-homomorphism.Glas. Mat. 39 (2014), 27–30. MR 2055383, 10.3336/gm.39.1.03
Reference: [17] Rehman N., Raza M.A.: On ideals with skew derivations of prime rings.Miskolc Math. Notes 15 (2014), no. 2, 717-724. Zbl 1324.16048, MR 3302354
Reference: [18] Rehman N., Raza M.A.: On $m$-commuting mappings with skew derivations in prime rings.Algebra i Analiz 27 (2015) no. 4, 74–86. Zbl 1342.16040
Reference: [19] Rehman N., Raza M.A.: Generalized derivations as homomorphism and anti-homomorphism on Lie ideals.Arab. Math. J., http://dx.doi.org/10.1016/j.ajmsc.2014.09.001. 10.1016/j.ajmsc.2014.09.001
Reference: [20] Wang Y., You H.: Derivations as homomorphism or anti-homomorphism on Lie ideals.Acta. Math. Sinica 23 (2007), 1149-1152. MR 2319944, 10.1007/s10114-005-0840-x
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_1.pdf 248.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo