Previous |  Up |  Next

Article

Title: On $\tau$-extending modules (English)
Author: Talebi, Y.
Author: Mohammadi, R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 279-288
Summary lang: English
.
Category: math
.
Summary: In this paper we introduce the concept of $\tau$-extending modules by $\tau$-rational submodules and study some properties of such modules. It is shown that the set of all $\tau$-rational left ideals of $_RR$ is a Gabriel filter. An $R$-module $M$ is called $\tau$-extending if every submodule of $M$ is $\tau$-rational in a direct summand of $M$. It is proved that $M$ is $\tau$-extending if and only if $M = Rej_ME(R/\tau(R))\oplus N$, such that $N$ is a $\tau$-extending submodule of $M$. An example is given to show that the direct sum of $\tau$-extending modules need not be $\tau$-extending. (English)
Keyword: torsion theory
Keyword: $\tau$-rational submodules
Keyword: $\tau$-closed submodules
Keyword: $\tau$-extending modules
MSC: 16D10
MSC: 16D80
MSC: 16D99
idZBL: Zbl 06674879
idMR: MR3554509
DOI: 10.14712/1213-7243.2015.172
.
Date available: 2016-09-22T15:20:00Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145833
.
Reference: [1] Anderson F.W., Fuller K.R.: Rings and Categories of Modules.Springer, New York, 1992. Zbl 0765.16001, MR 1245487
Reference: [2] Bland P.E.: Topics in Torsion Theory.Wiley-VCH Verlag, Berlin, 1998. Zbl 0899.16013, MR 1640903
Reference: [3] Bican L., Kepka T., Němec P.: Rings, Modules, and Preradicals.Marcel Dekker, New York, 1982. Zbl 0483.16026, MR 0655412
Reference: [4] Çeken S., Alkan M.: On $\tau$-extending modules.Mediterr. J. Math. 9 (2012), 129–142. Zbl 1258.16033, MR 2885489, 10.1007/s00009-010-0096-2
Reference: [5] Charalambides S., Clark J.: CS modules relative to a torsion theory.Mediterr. J. Math. 4 (2007), 291–308. Zbl 1130.16002, MR 2349889, 10.1007/s00009-007-0119-9
Reference: [6] Clark J., Lomp C., Vanaja N., Wisbauer R.: Lifting Modules.Birkhäuser, Basel, 2006. Zbl 1102.16001, MR 2253001
Reference: [7] Crivei S.: On $\tau$-complemented modules.Mathematica (Cluj) 45(68) (2003), no. 2, 127–136. Zbl 1084.16505, MR 2056044
Reference: [8] Dogruöz S.: Extending modules relative to a torsion theory.Czechoslovak Math. J. 58(133) (2008), 381–393. Zbl 1166.16014, MR 2411096, 10.1007/s10587-008-0022-y
Reference: [9] Dung N.V., Huynh D.V., Smith P.F., Wisbauer R.: Extending Modules.Pitman Research Notes in Mathematics Series, 313, Longman Scientific and Technical, Harlow, 1994. Zbl 0841.16001, MR 1312366
Reference: [10] Gomez Pardo J.L.: Spectral Gabriel topologies and relative singular functors.Comm. Algebra 13 (1985), no. 1, 21–57. Zbl 0552.16009, MR 0768085, 10.1080/00927878508823147
Reference: [11] Lam T.Y.: A First Course in Noncommutative Rings.Springer, New York, 1990. Zbl 0980.16001, MR 1838439
Reference: [12] Lam T.Y.: Lectures on Modules and Rings.Springer, New York, 1998. Zbl 0911.16001, MR 1653294
Reference: [13] Mohamed S.H., Müller B.J.: Continuous and Discrete Modules.London Math. Soc. Lecture Notes Series, 147, Cambridge Univ. Press, Cambridge, 1990. Zbl 0701.16001, MR 1084376
Reference: [14] Mohamed S., Müller B., Singh S.: A note on the decomposition of $\sigma$-injective modules.Comm. Algebra 12 (1984), 663–672. Zbl 0542.13003, MR 0735140, 10.1080/00927878408823021
Reference: [15] Smith P.F., Tercan A.: Generalizations of CS-modules.Comm. Algebra 21 (1993), no. 6, 1809–1847. Zbl 0779.16002, MR 1215548, 10.1080/00927879308824655
Reference: [16] Smith P.F., Viola-Prioli A.M., Viola-Prioli J.E.: Modules complemented with respect to a torsion theory.Comm. Algebra 25 (1997), 1307–1326. Zbl 0879.16017, MR 1437673, 10.1080/00927879708825921
Reference: [17] Stenström B.: Rings of Quotients.Springer, Berlin, 1975. MR 0389953
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_2.pdf 275.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo