Title:
|
A weighted inequality for the Hardy operator involving suprema (English) |
Author:
|
Hofmanová, Pavla |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
57 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
317-326 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $u$ be a weight on $(0, \infty)$. Assume that $u$ is continuous on $(0, \infty)$. Let the operator $S_{u}$ be given at measurable non-negative function $\varphi$ on $(0, \infty)$ by $$ S_{u}\varphi (t)= \sup_{0< \tau\leq t}u(\tau)\varphi (\tau). $$ We characterize weights $v,w$ on $(0, \infty)$ for which there exists a positive constant $C$ such that the inequality $$ \left( \int_{0}^{\infty}[S_{u}\varphi (t)]^{q}w(t)\,dt\right)^{\frac 1q} \lesssim \left( \int_{0}^{\infty}[\varphi (t)]^{p}v(t)\,dt\right)^{\frac 1p} $$ holds for every $0<p, q<\infty$. Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces. (English) |
Keyword:
|
Hardy operators involving suprema |
Keyword:
|
weighted inequalities |
MSC:
|
26D15 |
MSC:
|
47G10 |
idZBL:
|
Zbl 06674882 |
idMR:
|
MR3554512 |
DOI:
|
10.14712/1213-7243.2015.167 |
. |
Date available:
|
2016-09-22T15:23:42Z |
Last updated:
|
2018-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145836 |
. |
Reference:
|
[1] Ariño M., Muckenhoupt B.: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions.Trans. Amer. Math. Soc. 320 (1990), 727–735. Zbl 0716.42016, MR 0989570 |
Reference:
|
[2] Bennett C., Sharpley R.: Interpolation of Operators.Pure and Applied Mathematics, 129, Academic Press, Boston, 1988. Zbl 0647.46057, MR 0928802 |
Reference:
|
[3] Carro M., Gogatishvili A., Martín J., Pick L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces.J. Operator Theory 59 (2008), no. 2, 101–124. Zbl 1150.26001, MR 2411048 |
Reference:
|
[4] Cianchi A., Kerman R., Opic B., Pick L.: A sharp rearrangement inequality for fractional maximal operator.Studia Math. 138 (2000), 277-284. MR 1758860 |
Reference:
|
[5] Cianchi A., Pick L.: Optimal Gaussian Sobolev embeddings.J. Funct. Anal. 256 (2009), no. 11, 3588–3642. Zbl 1203.46019, MR 2514054, 10.1016/j.jfa.2009.03.001 |
Reference:
|
[6] Cianchi A., Pick L., Slavíková L.: Higher-order Sobolev embeddings and isoperimetric inequalities.preprint, 2012. Zbl 1334.46027 |
Reference:
|
[7] Cwikel M., Pustylnik E.: Weak type interpolation near “endpoint” spaces.J. Funct. Anal. 171 (1999), 235–277. Zbl 0978.46008, MR 1745635, 10.1006/jfan.1999.3502 |
Reference:
|
[8] Doktorskii R.Ya.: Reiteration relations of the real interpolation method.Soviet Math. Dokl. 44 (1992), 665–669. MR 1153547 |
Reference:
|
[9] Evans W.D., Opic B.: Real interpolation with logarithmic functors and reiteration.Canad. J. Math. 52 (2000), 920–960. Zbl 0981.46058, MR 1782334, 10.4153/CJM-2000-039-2 |
Reference:
|
[10] Gogatishvili A., Opic B., Pick L.: Weighted inequalities for Hardy-type operators involving suprema.Collect. Math. 57 (2006), no. 3, 227–255. Zbl 1116.47041, MR 2264321 |
Reference:
|
[11] Kerman R., Pick L.: Optimal Sobolev imbeddings.Forum Math. 18 (2006), no. 4, 535–570. Zbl 1120.46018, MR 2254384, 10.1515/FORUM.2006.028 |
Reference:
|
[12] Kerman R., Pick L.: Optimal Sobolev imbedding spaces.Studia Math. 192 (2009), no. 3, 195–217. Zbl 1180.46026, MR 2504838, 10.4064/sm192-3-1 |
Reference:
|
[13] Pick L.: Supremum operators and optimal Sobolev inequalities.Function Spaces, Differential Operators and Nonlinear Analysis, Vol. 4, Proceedings of the Spring School held in Syöte, June 1999, V. Mustonen and J. Rákosník (Eds.), Mathematical Institute of the Academy of Sciences of the Czech Republic, Praha, 2000, pp. 207–219. Zbl 0971.26010, MR 1755311 |
Reference:
|
[14] Pustylnik E.: Optimal interpolation in spaces of Lorentz-Zygmund type.J. Anal. Math. 79 (1999), 113–157. Zbl 1015.46011, MR 1749309, 10.1007/BF02788238 |
. |