Previous |  Up |  Next

Article

Title: A weighted inequality for the Hardy operator involving suprema (English)
Author: Hofmanová, Pavla
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 317-326
Summary lang: English
.
Category: math
.
Summary: Let $u$ be a weight on $(0, \infty)$. Assume that $u$ is continuous on $(0, \infty)$. Let the operator $S_{u}$ be given at measurable non-negative function $\varphi$ on $(0, \infty)$ by $$ S_{u}\varphi (t)= \sup_{0< \tau\leq t}u(\tau)\varphi (\tau). $$ We characterize weights $v,w$ on $(0, \infty)$ for which there exists a positive constant $C$ such that the inequality $$ \left( \int_{0}^{\infty}[S_{u}\varphi (t)]^{q}w(t)\,dt\right)^{\frac 1q} \lesssim \left( \int_{0}^{\infty}[\varphi (t)]^{p}v(t)\,dt\right)^{\frac 1p} $$ holds for every $0<p, q<\infty$. Such inequalities have been used in the study of optimal Sobolev embeddings and boundedness of certain operators on classical Lorenz spaces. (English)
Keyword: Hardy operators involving suprema
Keyword: weighted inequalities
MSC: 26D15
MSC: 47G10
idZBL: Zbl 06674882
idMR: MR3554512
DOI: 10.14712/1213-7243.2015.167
.
Date available: 2016-09-22T15:23:42Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145836
.
Reference: [1] Ariño M., Muckenhoupt B.: Maximal functions on classical Lorentz spaces and Hardy's inequality with weights for nonincreasing functions.Trans. Amer. Math. Soc. 320 (1990), 727–735. Zbl 0716.42016, MR 0989570
Reference: [2] Bennett C., Sharpley R.: Interpolation of Operators.Pure and Applied Mathematics, 129, Academic Press, Boston, 1988. Zbl 0647.46057, MR 0928802
Reference: [3] Carro M., Gogatishvili A., Martín J., Pick L.: Weighted inequalities involving two Hardy operators with applications to embeddings of function spaces.J. Operator Theory 59 (2008), no. 2, 101–124. Zbl 1150.26001, MR 2411048
Reference: [4] Cianchi A., Kerman R., Opic B., Pick L.: A sharp rearrangement inequality for fractional maximal operator.Studia Math. 138 (2000), 277-284. MR 1758860
Reference: [5] Cianchi A., Pick L.: Optimal Gaussian Sobolev embeddings.J. Funct. Anal. 256 (2009), no. 11, 3588–3642. Zbl 1203.46019, MR 2514054, 10.1016/j.jfa.2009.03.001
Reference: [6] Cianchi A., Pick L., Slavíková L.: Higher-order Sobolev embeddings and isoperimetric inequalities.preprint, 2012. Zbl 1334.46027
Reference: [7] Cwikel M., Pustylnik E.: Weak type interpolation near “endpoint” spaces.J. Funct. Anal. 171 (1999), 235–277. Zbl 0978.46008, MR 1745635, 10.1006/jfan.1999.3502
Reference: [8] Doktorskii R.Ya.: Reiteration relations of the real interpolation method.Soviet Math. Dokl. 44 (1992), 665–669. MR 1153547
Reference: [9] Evans W.D., Opic B.: Real interpolation with logarithmic functors and reiteration.Canad. J. Math. 52 (2000), 920–960. Zbl 0981.46058, MR 1782334, 10.4153/CJM-2000-039-2
Reference: [10] Gogatishvili A., Opic B., Pick L.: Weighted inequalities for Hardy-type operators involving suprema.Collect. Math. 57 (2006), no. 3, 227–255. Zbl 1116.47041, MR 2264321
Reference: [11] Kerman R., Pick L.: Optimal Sobolev imbeddings.Forum Math. 18 (2006), no. 4, 535–570. Zbl 1120.46018, MR 2254384, 10.1515/FORUM.2006.028
Reference: [12] Kerman R., Pick L.: Optimal Sobolev imbedding spaces.Studia Math. 192 (2009), no. 3, 195–217. Zbl 1180.46026, MR 2504838, 10.4064/sm192-3-1
Reference: [13] Pick L.: Supremum operators and optimal Sobolev inequalities.Function Spaces, Differential Operators and Nonlinear Analysis, Vol. 4, Proceedings of the Spring School held in Syöte, June 1999, V. Mustonen and J. Rákosník (Eds.), Mathematical Institute of the Academy of Sciences of the Czech Republic, Praha, 2000, pp. 207–219. Zbl 0971.26010, MR 1755311
Reference: [14] Pustylnik E.: Optimal interpolation in spaces of Lorentz-Zygmund type.J. Anal. Math. 79 (1999), 113–157. Zbl 1015.46011, MR 1749309, 10.1007/BF02788238
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_5.pdf 271.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo