Previous |  Up |  Next

Article

Title: The regularity of the positive part of functions in $L^2(I; H^1(\Omega)) \cap H^1(I; H^1(\Omega)^*)$ with applications to parabolic equations (English)
Author: Wachsmuth, Daniel
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 327-332
Summary lang: English
.
Category: math
.
Summary: Let $u\in L^2(I; H^1(\Omega))$ with $\partial_t u\in L^2(I; H^1(\Omega)^*)$ be given. Then we show by means of a counter-example that the positive part $u^+$ of $u$ has less regularity, in particular it holds $\partial_t u^+ \notin L^1(I; H^1(\Omega)^*)$ in general. Nevertheless, $u^+$ satisfies an integration-by-parts formula, which can be used to prove non-negativity of weak solutions of parabolic equations. (English)
Keyword: Bochner integrable function
Keyword: projection onto non-negative functions
Keyword: parabolic equation
MSC: 35K10
MSC: 46E35
idZBL: Zbl 06674883
idMR: MR3554513
DOI: 10.14712/1213-7243.2015.168
.
Date available: 2016-09-22T15:24:15Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145837
.
Reference: [1] Gajewski H., Gröger K., Zacharias K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Akademie-Verlag, Berlin, 1974. MR 0636412
Reference: [2] Grün G.: Degenerate parabolic differential equations of fourth order and a plasticity model with non-local hardening.Z. Anal. Anwendungen 14 (1995), no. 3, 541–574. MR 1362530, 10.4171/ZAA/639
Reference: [3] Roubíček T.: Nonlinear Partial Differential Equations with Applications.International Series of Numerical Mathematics, 153, Birkhäuser, Basel, 2013. Zbl 1270.35005, MR 3014456
Reference: [4] J. Wloka J.: Partielle Differentialgleichungen.Teubner, Stuttgart, 1982. Zbl 0482.35001, MR 0652934
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_6.pdf 248.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo