Previous |  Up |  Next

Article

Title: Functionally countable subalgebras and some properties of the Banaschewski compactification (English)
Author: Olfati, A. R.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 365-379
Summary lang: English
.
Category: math
.
Summary: Let $X$ be a zero-dimensional space and $C_c(X)$ be the set of all continuous real valued functions on $X$ with countable image. In this article we denote by $C_c^K(X)$ (resp., $C_c^{\psi}(X))$ the set of all functions in $C_c(X)$ with compact (resp., pseudocompact) support. First, we observe that $C_c^K(X)=O_c^{\beta_0X\setminus X}$ (resp., $C^{\psi}_c(X)=M_c^{\beta_0X\setminus \upsilon_0X}$), where $\beta_0X$ is the Banaschewski compactification of $X$ and $\upsilon_0X$ is the $\mathbb{N}$-compactification of $X$. This implies that for an $\mathbb{N}$-compact space $X$, the intersection of all free maximal ideals in $C_c(X)$ is equal to $C_c^K(X)$, i.e., $M_c^{\beta_0X\setminus X}=C_c^K(X)$. By applying methods of functionally countable subalgebras, we then obtain some results in the remainder of the Banaschewski compactification. We show that for a non-pseudocompact zero-dimensional space $X$, the set $\beta_0X\setminus \upsilon_0X$ has cardinality at least $2^{2^{\aleph_0}}$. Moreover, for a locally compact and $\mathbb{N}$-compact space $X$, the remainder $\beta_0X\setminus X$ is an almost $P$-space. These results lead us to find a class of Parovičenko spaces in the Banaschewski compactification of a non pseudocompact zero-dimensional space. We conclude with a theorem which gives a lower bound for the cellularity of the subspaces $\beta_0X\setminus \upsilon_0X$ and $\beta_0X\setminus X$, whenever $X$ is a zero-dimensional, locally compact space which is not pseudocompact. (English)
Keyword: zero-dimensional space
Keyword: strongly zero-dimensional space
Keyword: $\mathbb{N}$-compact space
Keyword: Banaschewski compactification
Keyword: pseudocompact space
Keyword: functionally countable subalgebra
Keyword: support
Keyword: cellularity
Keyword: remainder
Keyword: almost $P$-space
Keyword: Parovičenko space
MSC: 54A25
MSC: 54C30
MSC: 54C40
MSC: 54D40
MSC: 54D60
MSC: 54G05
idZBL: Zbl 1374.54030
idMR: MR3554517
DOI: 10.14712/1213-7243.2015.170
.
Date available: 2016-09-22T15:29:20Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145841
.
Reference: [1] Bhattacharjee P., Knox M.L., McGovern W.W.: The classical ring of quotients of $C_c(X)$.Appl. Gen. Topol. 15 (2014), no. 2, 147–154. Zbl 1305.54030, MR 3267269, 10.4995/agt.2014.3181
Reference: [2] Engelking R.: General Topology.PWN-Polish Sci. Publ., Warsaw, 1977. Zbl 0684.54001, MR 0500780
Reference: [3] Engelking R., Mrówka S.: On $E$-compact spaces.Bull. Acad. Polon. Sci. 6 (1958), 429–436. Zbl 0083.17402, MR 0097042
Reference: [4] Frankiewicz R., Zbierski P.: Hausdorff Gaps and Limits.Studies in logic and the foundations of mathematics, 132, North-Holland, Amsterdam, 1994. Zbl 0821.54001, MR 1311476
Reference: [5] Ghadermazi M., Karamzadeh O.A.S., Namdari M.: On the functionally countable subalgebra of $C(X)$.Rend. Sem. Mat. Univ. Padova 129 (2013), 47–69. Zbl 1279.54015, MR 3090630, 10.4171/RSMUP/129-4
Reference: [6] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579
Reference: [7] Hager A., Kimber C., McGovern W.W.: Unique $a$-closure for some $l$-groups of rational valued functions.Czechoslovak Math. J. 55 (2005), 409–421. MR 2137147, 10.1007/s10587-005-0031-z
Reference: [8] Hodel R.E., Jr.: Cardinal functions $I$.Handbook of Set-Theoretic Topology, Kunen K., Vaughan J.E. (eds.), North-Holland, Amsterdam, 1984, pp. 1–61. Zbl 0559.54003, MR 0776620
Reference: [9] Johnson D.G., Mandelker M.: Functions with pseudocompact support.General Topology Appl. 3 (1973), 331–338. Zbl 0277.54009, MR 0331310, 10.1016/0016-660X(73)90020-2
Reference: [10] Levy R.: Almost $P$-spaces.Canad. J. Math. 2 (1977), 284–288. Zbl 0342.54032, MR 0464203, 10.4153/CJM-1977-030-7
Reference: [11] Mandelker M.: Round $z$-filters and round subsets of $\beta X$.Israel. J. Math. 7 (1969), 1–8. Zbl 0174.25604, MR 0244951, 10.1007/BF02771740
Reference: [12] Mandelker M.: Supports of continuous functions.Trans. Amer. Math. Soc. 156 (1971), 73–83. Zbl 0197.48703, MR 0275367, 10.1090/S0002-9947-1971-0275367-4
Reference: [13] Mrówka S.: On universal spaces.Bull. Acad. Polon. Sci. Cl. III. 4 (1956), 479–481. Zbl 0071.38301, MR 0089401
Reference: [14] Mrówka S.: Structures of continuous functions III. Rings and lattices of integer-valued continuous functions.Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 74–82. Zbl 0139.07404, MR 0237580, 10.1016/S1385-7258(65)50008-1
Reference: [15] Mrówka S., Shore S.D.: Structures of continuous functions V. On homomorphisms of structures of continuous functions with zero-dimensional compact domain.Vehr. Nederl. Akad. Weten. Sect. I. 68 (1965), 92–94. MR 0237582
Reference: [16] Mrówka S.: On $E$-compact spaces II.Bull.Acad. Polon. Sci. 14 (1966), 597–605. Zbl 0161.19603
Reference: [17] Mrówka S.: Further results on $E$-compact spaces. I.Acta. Math. Hung. 120 (1968), 161–185. Zbl 0179.51202, MR 0226576, 10.1007/BF02394609
Reference: [18] Mrówka S.: Structures of continuous functions. I.Acta. Math. Hung. 21(3-4) (1970), 239–259. Zbl 0229.46027, MR 0269706
Reference: [19] Pierce R. S.: Rings of integer-valued continuous functions.Trans. Amer. Math. Soc. 100 (1961), 371–394. Zbl 0196.15401, MR 0131438, 10.1090/S0002-9947-1961-0131438-8
Reference: [20] Porter J.R., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341
Reference: [21] Veksler A.I.: $P'$-points, $P'$-sets, $P'$-spaces. A new class of order-continuous measures and functionals.Dokl. Akad. Nauk SSSR 14 (1973), 1445–1450. Zbl 0291.54046, MR 0341447
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_10.pdf 326.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo