Previous |  Up |  Next

Article

Title: Spaces with star countable extent (English)
Author: Rojas-Sánchez, A. D.
Author: Tamariz-Mascarúa, Á.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 3
Year: 2016
Pages: 381-395
Summary lang: English
.
Category: math
.
Summary: For a topological property $P$, we say that a space $X$ is star $P$ if for every open cover $\mathcal{U}$ of the space $X$ there exists $A\subset X$ such that $st (A,\mathcal{U})= X$. We consider space with star countable extent establishing the relations between the star countable extent property and the properties star Lindelöf and feebly Lindelöf. We describe some classes of spaces in which the star countable extent property is equivalent to either the Lindelöf property or separability. An example is given of a Tychonoff star Lindelöf space with a point countable base which is not star countable. (English)
Keyword: extent
Keyword: star properties
Keyword: star countable spaces
Keyword: star Lindelöf spaces
Keyword: feebly Lindelöf spaces
MSC: 54B05
MSC: 54B10
MSC: 54C10
MSC: 54D20
idZBL: Zbl 06674888
idMR: MR3554518
DOI: 10.14712/1213-7243.2015.176
.
Date available: 2016-09-22T15:30:21Z
Last updated: 2018-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145842
.
Reference: [1] Alas O.T., Junqueira L.R., Wilson R.G.: Countability and star covering properties.Topology Appl. 158 (2011), no. 4, 620–626. Zbl 1226.54023, MR 2765618, 10.1016/j.topol.2010.12.012
Reference: [2] Alas O.T., Junqueira L.R., van Mill J., Tkachuk V.V., Wilson R.G.: On the extent of star countable spaces.Cent. Eur. J. Math. 9 (2011), no. 3, 603–615. Zbl 1246.54017, MR 2784032, 10.2478/s11533-011-0018-y
Reference: [3] Arhangel'skii A.V., Buzyakova R.Z.: Additions theorems and D-spaces.Comment. Math. Univ. Carolin. 43 (2002), no. 4, 653–663. MR 2045787
Reference: [4] Creede G.: Concerning semistratifiable spaces.Pacific J. Math. 32 (1970), 47–54. MR 0254799, 10.2140/pjm.1970.32.47
Reference: [5] van Douwen E., Reed G.M., Roscoe A.W., Tree I.J.: Star covering properties.Topology Appl. 39 (1991), 71–103. Zbl 0743.54007, MR 1103993, 10.1016/0166-8641(91)90077-Y
Reference: [6] Hiremath G.R.: On star with Lindelöf center property.J. Indian Math. Soc. 59 (1993), 227–242. Zbl 0887.54021, MR 1248966
Reference: [7] Kuratowski K.: Topology.Vol. I, Academic Press, New York-London, 1966. Zbl 0849.01044, MR 0217751
Reference: [8] Matveev M.V.: A survey on star covering properties.Topology Atlas, 1998, preprint no. 330.
Reference: [9] van Mill J., Tkachuk V.V., Wilson R.G.: Classes defined by stars and neighbourhood assignments.Topology Appl. 154 (2007), no. 10, 2127–2134. Zbl 1131.54022, MR 2324924, 10.1016/j.topol.2006.03.029
Reference: [10] Pixley C., Roy P.: Uncompletable Moore spaces.Procedings of the Auburn Topology Conference (Auburn Univ., Ala., 1969), Auburn University, Ala., 1969, pp. 75–85. Zbl 0259.54022, MR 0397671
Reference: [11] Shakhmatov D.B.: On pseudocompact spaces with point-countable base.Dokl. Akad. Nauk SSSR 30 (1984), no. 3, 747–751. Zbl 0598.54010, MR 0771585
Reference: [12] Song Y.K.: On relative star-Lindelöf spaces.New Zealand J. Math. 34 (2005), 159–163. Zbl 1099.54022, MR 2195833
Reference: [13] Song Y.K.: On L-starcompact spaces.Czechoslovak Math. J. 56(2) (2006), 781–788. MR 2291775, 10.1007/s10587-006-0056-y
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-3_11.pdf 306.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo