Previous |  Up |  Next

Article

Title: On some properties of the Laplacian matrix revealed by the RCM algorithm (English)
Author: Pedroche, Francisco
Author: Rebollo, Miguel
Author: Carrascosa, Carlos
Author: Palomares, Alberto
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 603-620
Summary lang: English
.
Category: math
.
Summary: In this paper we present some theoretical results about the irreducibility of the Laplacian matrix ordered by the Reverse Cuthill-McKee (RCM) algorithm. We consider undirected graphs with no loops consisting of some connected components. RCM is a well-known scheme for numbering the nodes of a network in such a way that the corresponding adjacency matrix has a narrow bandwidth. Inspired by some properties of the eigenvectors of a Laplacian matrix, we derive some properties based on row sums of a Laplacian matrix that was reordered by the RCM algorithm. One of the theoretical results serves as a basis for writing an easy MATLAB code to detect connected components, by using the function ``symrcm'' of MATLAB. Some examples illustrate the theoretical results. (English)
Keyword: ordering algorithm
Keyword: reverse Cuthill-McKee algorithm
Keyword: graph partitioning
Keyword: Laplacian matrix
MSC: 05C50
MSC: 15B36
idZBL: Zbl 06644022
idMR: MR3556856
DOI: 10.1007/s10587-016-0281-y
.
Date available: 2016-10-01T15:11:14Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145860
.
Reference: [1] Benzi, M., Szyld, D. B., Duin, A. C. N. van: Orderings for incomplete factorization preconditioning of nonsymmetric problems.SIAM J. Sci. Comput. 20 (1999), 1652-1670. MR 1694677, 10.1137/S1064827597326845
Reference: [2] Boley, D., Ranjan, G., Zhang, Z.-L.: Commute times for a directed graph using an asymmetric Laplacian.Linear Algebra Appl. 435 (2011), 224-242. Zbl 1226.05125, MR 2782776
Reference: [3] Bolten, M., Friedhoff, S., Frommer, A., Heming, M., Kahl, K.: Algebraic multigrid methods for Laplacians of graphs.Linear Algebra Appl. 434 (2011), 2225-2243. Zbl 1217.65063, MR 2776793
Reference: [4] Cuthill, E., McKee, J.: Reducing the bandwidth of sparse symmetric matrices.Proc. 24th Nat. Conf. of the ACM, ACM Publ P-69, Association for Computing Machinery, New York, 1969 157-172 doi:10.1145/800195.805928. 10.1145/800195.805928
Reference: [5] Abreu, N. M. M. de: Old and new results on algebraic connectivity of graphs.Linear Algebra Appl. 423, (2007), 53-73. Zbl 1115.05056, MR 2312323, 10.1016/j.laa.2006.08.017
Reference: [6] Corso, G. M. Del, Romani, F.: Heuristic spectral techniques for the reduction of bandwidth and work-bound of sparse matrices.Numer. Algorithms 28 (2001), 117-136. MR 1887751, 10.1023/A:1014082430392
Reference: [7] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168
Reference: [8] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321, 10.21136/CMJ.1975.101357
Reference: [9] Fortunato, S.: Community detection in graphs.Phys. Rep. 486 (2010), 75-174. MR 2580414, 10.1016/j.physrep.2009.11.002
Reference: [10] George, J. A.: Computer Implementation of the Finite Element Method.Doctoral Dissertation, Stanford University, Stanford (1971).
Reference: [11] George, A., Liu, J. W.-H.: Computer Solution of Large Sparse Positive Definite Systems.Prentice-Hall Series in Computational Mathematics Prentice-Hall, Englewood Cliffs (1981). Zbl 0516.65010, MR 0646786
Reference: [12] Gilbert, J. R., Moler, C., Schreiber, R.: Sparse matrices in MATLAB: Design and implementation.SIAM J. Matrix Anal. Appl. 13 (1992), 333-356. Zbl 0752.65037, MR 1146669, 10.1137/0613024
Reference: [13] Gross, J. L., Yellen, J., eds.: Handbook of Graph Theory.Discrete Mathematics and Its Applications CRC Press, Boca Raton (2004). MR 2035186
Reference: [14] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (1985). Zbl 0576.15001, MR 0832183
Reference: [15] Jungnickel, D.: Graphs, Networks and Algorithms.Algorithms and Computation in Mathematics 5 Springer, Berlin (2008). Zbl 1126.68058, MR 2363884, 10.1007/978-3-540-72780-4_11
Reference: [16] Juvan, M., Mohar, B.: Laplace eigenvalues and bandwidth-type invariants of graphs.J. Graph Theory, 17 (1993), 393-407. Zbl 0785.05077, MR 1220999, 10.1002/jgt.3190170313
Reference: [17] Kumfert, G., Pothen, A.: Two improved algorithms for envelope and wavefront reduction.BIT 37 (1997), 559-590. Zbl 0891.65043, MR 1483674, 10.1007/BF02510240
Reference: [18] Liu, W-H., Sherman, A. H.: Comparative analysis of the Cuthill-McKee and the reverse Cuthill-McKee ordering algorithms for sparse matrices.SIAM J. Numer. Anal. 13 (1976), 198-213. MR 0501813, 10.1137/0713020
Reference: [19] Mohar, B.: The Laplacian spectrum of graphs.Graph theory, Combinatorics, and Applications Vol. 2. Proc. Sixth Quadrennial International Conf. on the Theory and Applications of Graphs, Kalamazoo, Michigan, 1988 Y. Alavi et all John Wiley & Sons, New York (1991), 871-898. Zbl 0840.05059, MR 1170831
Reference: [20] Molitierno, J. J.: The spectral radius of submatrices of Laplacian matrices for graphs with cut vertices.Linear Algebra Appl. 428 (2008), 1987-1999. Zbl 1137.05045, MR 2401634
Reference: [21] Mueller, C., Martin, B., Lumsdaine, A.: A comparison of vertex ordering algorithms for large graph visualization.Visualization Asia-Pacific Symposium on Visualization 2007, Sydney, Australia (2007), 141-148 doi: 10.1109/APVIS.2007.329289. 10.1109/APVIS.2007.329289
Reference: [22] Nascimento, M. C. V., Carvalho, A. De: Spectral methods for graph clustering---a survay.Eur. J. Oper. Res. 211 (2011), 221-231. MR 2774401, 10.1016/j.ejor.2010.08.012
Reference: [23] Newman, M. E. J.: Networks. An Introduction.Oxford University Press, Oxford (2010). Zbl 1195.94003, MR 2676073, 10.1093/acprof:oso/9780199206650.003.0001
Reference: [24] Pothen, A., Simon, H. D., Liou, K. P.: Partitioning sparse matrices with eigenvector of graphs.SIAM J. Matrix Anal. Appl. 11 (1990), 430-452. MR 1054210, 10.1137/0611030
Reference: [25] Rebollo, M., Carrascosa, C., Palomares, A., Pedroche, F.: Some examples of detection of connected components in undirected graphs by using the Laplacian matrix and the RCM algorithm.Int. J. Complex Systems in Science 2 (2012), 11-15.
Reference: [26] Reid, J. K., Scott, J.A.: Reducing the total bandwidth of a sparse unsymmetric matrix.Siam J. Matrix Anal. Appl. 28 (2006), 805-821. Zbl 1123.65027, MR 2262982, 10.1137/050629938
Reference: [27] Saad, Y.: Iterative Methods for Sparse Linear Systems.Society for Industrial and Applied Mathematics Philadelphia (2003). Zbl 1031.65046, MR 1990645
Reference: [28] Schaeffer, S. E.: Graph clustering.Comput. Sci. Rev. 1 (2007), 27-64. Zbl 1302.68237, 10.1016/j.cosrev.2007.05.001
Reference: [29] Tarjan, R.: Depth-first search and linear graph algorithms.SIAM J. Comput. 1 (1972), 146-160. Zbl 0251.05107, MR 0304178, 10.1137/0201010
Reference: [30] Varga, R. S.: Matrix Iterative Analysis.Springer Series in Computational Mathematics 27 Springer, Berlin (2000). Zbl 0998.65505, MR 1753713, 10.1007/978-3-642-05156-2
.

Files

Files Size Format View
CzechMathJ_66-2016-3_6.pdf 251.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo