Previous |  Up |  Next

Article

Title: A Fiedler-like theory for the perturbed Laplacian (English)
Author: Rocha, Israel
Author: Trevisan, Vilmar
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 717-735
Summary lang: English
.
Category: math
.
Summary: The perturbed Laplacian matrix of a graph $G$ is defined as $L^{\mkern -15muD}=D-A$, where $D$ is any diagonal matrix and $A$ is a weighted adjacency matrix of $G$. We develop a Fiedler-like theory for this matrix, leading to results that are of the same type as those obtained with the algebraic connectivity of a graph. We show a monotonicity theorem for the harmonic eigenfunction corresponding to the second smallest eigenvalue of the perturbed Laplacian matrix over the points of articulation of a graph. Furthermore, we use the notion of Perron component for the perturbed Laplacian matrix of a graph and show how its second smallest eigenvalue can be characterized using this definition. (English)
Keyword: perturbed Laplacian matrix
Keyword: Fiedler vector
Keyword: algebraic connectivity
Keyword: graph partitioning
MSC: 05C22
MSC: 05C50
MSC: 15B57
idZBL: Zbl 06644029
idMR: MR3556863
DOI: 10.1007/s10587-016-0288-4
.
Date available: 2016-10-01T15:19:10Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145867
.
Reference: [1] Bapat, R. B., Kirkland, S. J., Pati, S.: The perturbed Laplacian matrix of a graph.Linear Multilinear Algebra 49 (2001), 219-242. Zbl 0984.05056, MR 1888190, 10.1080/03081080108818697
Reference: [2] Butler, S.: Eigenvalues and Structures of Graphs.PhD Disssertation, University of California, San Diego (2008). MR 2711548
Reference: [3] Cavers, M.: The Normalized Laplacian Matrix and General Randic Index of Graphs.PhD Dissertation, University of Regina, 2010. MR 3078627
Reference: [4] Chung, F. R. K.: Spectral Graph Theory.Regional Conference Series in Mathematics 92 American Mathematical Society, Providence (1997). Zbl 0867.05046, MR 1421568
Reference: [5] Chung, F. R. K., Richardson, R. M.: Weighted Laplacians and the sigma function of a graph.Proc. of an AMS-IMS-SIAM joint summer research conf. on Quantum Graphs and Their Applications, Snowbird, 2005 B. Berkolaiko et al. Contemporary Mathematics 415 (2006), 93-107. Zbl 1106.05058, MR 2277610, 10.1090/conm/415/07862
Reference: [6] Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory.Czech. Math. J. 25 (1975), 619-633. Zbl 0437.15004, MR 0387321, 10.21136/CMJ.1975.101357
Reference: [7] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168
Reference: [8] Kirkland, S., Fallat, S.: Perron components and algebraic connectivity for weighted graphs.Linear Multilinear Algebra 44 (1998), 131-148. Zbl 0926.05026, MR 1674228, 10.1080/03081089808818554
Reference: [9] Kirkland, S., Neumann, M., Shader, B. L.: Characteristic vertices of weighted trees via Perron values.Linear Multilinear Algebra 40 (1996), 311-325. Zbl 0866.05041, MR 1384650, 10.1080/03081089608818448
Reference: [10] Li, H.-H., Li, J.-S., Fan, Y.-Z.: The effect on the second smallest eigenvalue of the normalized Laplacian of a graph by grafting edges.Linear Multilinear Algebra 56 (2008), 627-638. Zbl 1159.05317, MR 2457689, 10.1080/03081080601143090
Reference: [11] Merris, R.: Characteristic vertices of trees.22 (1987), Linear Multilinear Algebra 115-131. Zbl 0636.05021, MR 0936566, 10.1080/03081088708817827
Reference: [12] Nikiforov, V.: The influence of Miroslav Fiedler on spectral graph theory.Linear Algebra Appl. 439 (2013), 818-821. Zbl 1282.05145, MR 3061737
.

Files

Files Size Format View
CzechMathJ_66-2016-3_13.pdf 249.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo