Previous |  Up |  Next

Article

Title: A sharp upper bound for the spectral radius of a nonnegative matrix and applications (English)
Author: You, Lihua
Author: Shu, Yujie
Author: Zhang, Xiao-Dong
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 701-715
Summary lang: English
.
Category: math
.
Summary: We obtain a sharp upper bound for the spectral radius of a nonnegative matrix. This result is used to present upper bounds for the adjacency spectral radius, the Laplacian spectral radius, the signless Laplacian spectral radius, the distance spectral radius, the distance Laplacian spectral radius, the distance signless Laplacian spectral radius of an undirected graph or a digraph. These results are new or generalize some known results. (English)
Keyword: nonnegative matrix
Keyword: spectral radius
Keyword: graph
Keyword: digraph
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06644028
idMR: MR3556862
DOI: 10.1007/s10587-016-0287-5
.
Date available: 2016-10-01T15:18:15Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145866
.
Reference: [1] Aouchiche, M., Hansen, P.: Two Laplacians for the distance matrix of a graph.Linear Algebra Appl. 439 (2013), 21-33. Zbl 1282.05086, MR 3045220
Reference: [2] Berman, A., Plemmons, R. J.: Nonnegative Matrices in the Mathematical Sciences.Computer Science and Applied Mathematics New York, Academic Press (1979). Zbl 0484.15016, MR 0544666
Reference: [3] Bozkurt, S. B., Bozkurt, D.: On the signless Laplacian spectral radius of digraphs.Ars Comb. 108 (2013), 193-200. Zbl 1289.05270, MR 3060265
Reference: [4] Cao, D.: Bounds on eigenvalues and chromatic numbers.Linear Algebra Appl. 270 (1998), 1-13. Zbl 0894.05041, MR 1484072
Reference: [5] Chen, Y.-H., Pan, R.-Y., Zhang, X.-D.: Two sharp upper bounds for the signless Laplacian spectral radius of graphs.Discrete Math. Algorithms Appl. 3 (2011), 185-192. Zbl 1222.05149, MR 2822283, 10.1142/S1793830911001152
Reference: [6] Cui, S.-Y., Tian, G.-X., Guo, J.-J.: A sharp upper bound on the signless Laplacian spectral radius of graphs.Linear Algebra Appl. 439 (2013), 2442-2447. Zbl 1282.05072, MR 3091317
Reference: [7] Das, K. Ch.: A characterization on graphs which achieve the upper bound for the largest Laplacian eigenvalue of graphs.Linear Algebra Appl. 376 (2004), 173-186. Zbl 1042.05059, MR 2015532
Reference: [8] Das, K. Ch., Kumar, P.: Some new bounds on the spectral radius of graphs.Discrete Math. 281 (2004), 149-161. Zbl 1042.05060, MR 2047763, 10.1016/j.disc.2003.08.005
Reference: [9] Fiedler, M.: A geometric approach to the Laplacian matrix of a graph.Combinatorial and Graph-Theoretical Problems in Linear Algebra R. A. Brualdi 73-98 Proc. Conf. Minnesota 1991. IMA Vol. Math. Appl. 50 Springer, New York (1993). Zbl 0791.05073, MR 1240957
Reference: [10] Fiedler, M.: Algebraic connectivity of graphs.Czech. Math. J. 23 (1973), 298-305. Zbl 0265.05119, MR 0318007, 10.21136/CMJ.1973.101168
Reference: [11] Guo, J.-M.: A new upper bound for the Laplacian spectral radius of graphs.Linear Algebra Appl. 400 (2005), 61-66. Zbl 1062.05091, MR 2131916, 10.1016/j.laa.2004.10.022
Reference: [12] Guo, J.-M., Li, J., Shiu, W. C.: A note on the upper bounds for the Laplacian spectral radius of graphs.Linear Algebra Appl. 439 (2013), 1657-1661. Zbl 1282.05117, MR 3073893
Reference: [13] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290
Reference: [14] Li, J.-S., Pan, Y.-L.: Upper bound for the Laplacian graph eigenvalues.Acta Math. Sin., Engl. Ser. 20 (2004), 803-806. Zbl 1074.15026, MR 2121091, 10.1007/s10114-004-0332-4
Reference: [15] Li, J.-S., Pan, Y.-L.: de Caen's inequality and bounds on the largest Laplacian eigenvalue of a graph.Linear Algebra Appl. 328 (2001), 153-160. Zbl 0988.05062, MR 1823515
Reference: [16] Li, J.-S., Zhang, X.-D.: On the Laplacian eigenvalues of a graph.Linear Algebra Appl. 285 (1998), 305-307. Zbl 0931.05052, MR 1653547
Reference: [17] Oliveira, C. S., Lima, L. S. de, Abreu, N. M. M. de, Hansen, P.: Bounds on the index of the signless Laplacian of a graph.Discrete Appl. Math. 158 (2010), 355-360. Zbl 1225.05174, MR 2588119, 10.1016/j.dam.2009.06.023
Reference: [18] Shu, J., Wu, Y.: Sharp upper bounds on the spectral radius of graphs.Linear Algebra Appl. 377 (2004), 241-248. Zbl 1030.05073, MR 2021614, 10.1016/j.laa.2003.07.015
Reference: [19] Zhang, X.-D.: Two sharp upper bounds for the Laplacian eigenvalues.Linear Algebra Appl. 376 (2004), 207-213. Zbl 1037.05032, MR 2015534
Reference: [20] Zhang, X.-D., Li, J.-S.: Spectral radius of non-negative matrices and digraphs.Acta Math. Sin., Engl. Ser. 18 (2002), 293-300. Zbl 1019.15007, MR 1910965, 10.1007/s101140200157
Reference: [21] Zhang, X.-D., Luo, R.: The Laplacian eigenvalues of mixed graphs.Linear Algebra Appl. 362 (2003), 109-119. Zbl 1017.05078, MR 1955457, 10.1016/S0024-3795(02)00509-8
.

Files

Files Size Format View
CzechMathJ_66-2016-3_12.pdf 222.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo