Previous |  Up |  Next

Article

Title: Geometry and inequalities of geometric mean (English)
Author: Dinh, Trung Hoa
Author: Ahsani, Sima
Author: Tam, Tin-Yau
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 777-792
Summary lang: English
.
Category: math
.
Summary: We study some geometric properties associated with the $t$-geometric means $A\sharp _{t}B := A^{1/2}(A^{-1/2}BA^{-1/2})^{t}A^{1/2}$ of two $n\times n$ positive definite matrices $A$ and $B$. Some geodesical convexity results with respect to the Riemannian structure of the $n\times n$ positive definite matrices are obtained. Several norm inequalities with geometric mean are obtained. In particular, we generalize a recent result of Audenaert (2015). Numerical counterexamples are given for some inequality questions. A conjecture on the geometric mean inequality regarding $m$ pairs of positive definite matrices is posted. (English)
Keyword: geometric mean
Keyword: positive definite matrix
Keyword: log majorization
Keyword: geodesics
Keyword: geodesically convex
Keyword: geodesic convex hull
Keyword: unitarily invariant norm
MSC: 15A45
MSC: 15B48
idZBL: Zbl 06644033
idMR: MR3556867
DOI: 10.1007/s10587-016-0292-8
.
Date available: 2016-10-01T15:24:02Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145871
.
Reference: [1] Ando, T.: Concavity of certain maps on positive definite matrices and applications to Hadamard products.Linear Algebra Appl. 26 (1979), 203-241. Zbl 0495.15018, MR 0535686, 10.1016/0024-3795(79)90179-4
Reference: [2] Ando, T., Hiai, F.: Log majorization and complementary Golden-Thompson type inequalities.Linear Algebra Appl. 197/198 (1994), 113-131. Zbl 0793.15011, MR 1275611
Reference: [3] Araki, H.: On an inequality of Lieb and Thirring.Lett. Math. Phys. 19 (1990), 167-170. Zbl 0705.47020, MR 1039525, 10.1007/BF01045887
Reference: [4] Audenaert, K. M. R.: A norm inequality for pairs of commuting positive semidefinite matrices.Electron. J. Linear Algebra (electronic only) 30 (2015), 80-84. Zbl 1326.15030, MR 3318430
Reference: [5] Bhatia, R.: The Riemannian mean of positive matrices.Matrix Information Geometry Springer, Berlin F. Nielsen et al. (2013), 35-51. Zbl 1271.15019, MR 2964446, 10.1007/978-3-642-30232-9_2
Reference: [6] Bhatia, R.: Postitive Definite Matrices.Princeton Series in Applied Mathematics Princeton University Press, Princeton (2007). MR 3443454
Reference: [7] Bhatia, R.: Matrix Analysis.Graduate Texts in Mathematics 169 Springer, New York (1997). MR 1477662
Reference: [8] Bhatia, R., Grover, P.: Norm inequalities related to the matrix geometric mean.Linear Algebra Appl. 437 (2012), 726-733. Zbl 1252.15023, MR 2921731
Reference: [9] Bourin, J.-C.: Matrix subadditivity inequalities and block-matrices.Int. J. Math. 20 (2009), 679-691. Zbl 1181.15030, MR 2541930, 10.1142/S0129167X09005509
Reference: [10] Bourin, J.-C., Uchiyama, M.: A matrix subadditivity inequality for {$f(A+B)$} and {$f(A)+f(B)$}.Linear Algebra Appl. 423 (2007), 512-518. Zbl 1123.15013, MR 2312422
Reference: [11] Fiedler, M., Pták, V.: A new positive definite geometric mean of two positive definite matrices.Linear Algebra Appl. 251 (1997), 1-20. Zbl 0872.15014, MR 1421263
Reference: [12] Hayajneh, S., Kittaneh, F.: Trace inequalities and a question of Bourin.Bull. Aust. Math. Soc. 88 (2013), 384-389. Zbl 1287.47011, MR 3189289, 10.1017/S0004972712001104
Reference: [13] Lin, M.: Remarks on two recent results of Audenaert.Linear Algebra Appl. 489 (2016), 24-29. Zbl 1326.15033, MR 3421835
Reference: [14] Lin, M.: Inequalities related to {$2\times2$} block PPT matrices.Oper. Matrices 9 (2015), 917-924. MR 3447594, 10.7153/oam-09-54
Reference: [15] Marshall, A. W., Olkin, I., Arnold, B. C.: Inequalities: Theory of Majorization and Its Applications.Springer Series in Statistics Springer, New York (2011). Zbl 1219.26003, MR 2759813
Reference: [16] Papadopoulos, A.: Metric Spaces, Convexity and Nonpositive Curvature.IRMA Lectures in Mathematics and Theoretical Physics 6 European Mathematical Society, Zürich (2005). Zbl 1115.53002, MR 2132506
Reference: [17] Pusz, W., Woronowicz, S. L.: Functional calculus for sesquilinear forms and the purification map.Rep. Math. Phys. 8 (1975), 159-170. Zbl 0327.46032, MR 0420302, 10.1016/0034-4877(75)90061-0
Reference: [18] Thompson, R. C.: Singular values, diagonal elements, and convexity.SIAM J. Appl. Math. 32 (1977), 39-63. Zbl 0361.15009, MR 0424847, 10.1137/0132003
Reference: [19] Zhan, X.: Matrix Inequalities.Lecture Notes in Mathematics 1790 Springer, Berlin (2002). Zbl 1018.15016, MR 1927396, 10.1007/b83956
.

Files

Files Size Format View
CzechMathJ_66-2016-3_17.pdf 225.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo