Previous |  Up |  Next

Article

Title: Nice connecting paths in connected components of sets of algebraic elements in a Banach algebra (English)
Author: Makai, Endre Jr.
Author: Zemánek, Jaroslav
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 821-828
Summary lang: English
.
Category: math
.
Summary: Generalizing earlier results about the set of idempotents in a Banach algebra, or of self-adjoint idempotents in a $C^*$-algebra, we announce constructions of nice connecting paths in the connected components of the set of elements in a Banach algebra, or of self-adjoint elements in a $C^*$-algebra, that satisfy a given polynomial equation, without multiple roots. In particular, we prove that in the Banach algebra case every such non-central element lies on a complex line, all of whose points satisfy the given equation. We also formulate open questions. (English)
Keyword: Banach algebra
Keyword: $C^*$-algebra
Keyword: (self-adjoint) idempotent
Keyword: connected component of (self-adjoint) algebraic elements
Keyword: (local) pathwise connectedness
Keyword: similarity
Keyword: analytic path
Keyword: polynomial path
Keyword: polygonal path
Keyword: centre of a Banach algebra
Keyword: distance of connected components
MSC: 46H20
MSC: 46L05
idZBL: Zbl 06644035
idMR: MR3556869
DOI: 10.1007/s10587-016-0294-6
.
Date available: 2016-10-01T15:26:10Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145873
.
Reference: [1] B. Aupetit, E. Makai, Jr., M. Mbekhta, J. Zemánek: The connected components of the idempotents in the Calkin algebra, and their liftings.Operator Theory and Banach Algebras, Proc. Int. Conf. in Analysis, Rabat, 1999 M. Chidami et al. Theta, Bucharest (2003), 23-30. Zbl 1084.46519, MR 2006311
Reference: [2] Boulmaarouf, Z., Miranda, M. Fernandez, Labrousse, J.-Ph.: An algorithmic approach to orthogonal projections and Moore-Penrose inverses.Numer. Funct. Anal. Optimization 18 (1997), 55-63. MR 1442018, 10.1080/01630569708816746
Reference: [3] Esterle, J.: Polynomial connections between projections in Banach algebras.Bull. Lond. Math. Soc. 15 (1983), 253-254. Zbl 0517.46034, MR 0697127, 10.1112/blms/15.3.253
Reference: [4] Kovarik, Z. V.: Similarity and interpolation between projectors.Acta Sci. Math. 39 (1977), 341-351. Zbl 0392.47008, MR 0482324
Reference: [5] Maeda, S.: On arcs in the space of projections of a $C^*$-algebra.Math. Jap. 21 (1976), 371-374. Zbl 0353.46051, MR 0454651
Reference: [6] E. Makai, Jr.: Algebraic elements in Banach algebras (joint work with J. Zemánek).6th Linear Algebra Workshop, Book of Abstracts Kranjska Gora (2011), p. 26.
Reference: [7] E. Makai, Jr., J. Zemánek: On the structure of the set of elements in a Banach algebra which satisfy a given polynomial equation, and their liftings. Available at www.renyi.mta.hu/ {makai}..
Reference: [8] E. Makai, Jr., J. Zemánek: On polynomial connections between projections.Linear Algebra Appl. 126 (1989), 91-94. Zbl 0714.47011, MR 1040774
Reference: [9] Trémon, M.: On the degree of polynomials connecting two idempotents of a Banach algebra.Proc. R. Ir. Acad. Sect. A 95 (1995), 233-235. Zbl 0853.46044, MR 1660382
Reference: [10] Tremon, M.: Polynômes de degré minimum connectant deux projections dans une algèbre de Banach.Linear Algebra Appl. French 64 (1985), 115-132. Zbl 0617.46054, MR 0776520
Reference: [11] Zemánek, J.: Idempotents in Banach algebras.Bull. Lond. Math. Soc. 11 (1979), 177-183. Zbl 0429.46029, MR 0541972, 10.1112/blms/11.2.177
.

Files

Files Size Format View
CzechMathJ_66-2016-3_19.pdf 173.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo