Title:
|
Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels (English) |
Author:
|
Brousek, Jan |
Author:
|
Fraňková, Pavla |
Author:
|
Vaněk, Petr |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
829-845 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear prolongator smoother. The tentative prolongator is responsible for the approximation, while the prolongator smoother enforces the smoothness of the coarse-level basis functions. (English) |
Keyword:
|
smoothed aggregation |
Keyword:
|
improved convergence bound |
MSC:
|
65F10 |
MSC:
|
65N12 |
MSC:
|
65N55 |
idZBL:
|
Zbl 06644036 |
idMR:
|
MR3556870 |
DOI:
|
10.1007/s10587-016-0295-5 |
. |
Date available:
|
2016-10-01T15:26:59Z |
Last updated:
|
2023-10-28 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145874 |
. |
Reference:
|
[1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4 |
Reference:
|
[2] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid.Numer. Linear Algebra Appl. 19 (2012), 441-469. Zbl 1274.65315, MR 2911383, 10.1002/nla.775 |
Reference:
|
[3] Fraňková, P., Mandel, J., Vaněk, P.: Model analysis of BPX preconditioner based on smoothed aggregations.Appl. Math., Praha 60 (2015), 219-250. MR 3419960, 10.1007/s10492-015-0093-7 |
Reference:
|
[4] Vaněk, P.: Fast multigrid solver.Appl. Math., Praha 40 (1995), 1-20. Zbl 0824.65016, MR 1305645 |
Reference:
|
[5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator.Appl. Math., Praha 37 (1992), 265-274. MR 1180605 |
Reference:
|
[6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing.Appl. Math., Praha 58 (2013), 369-388. Zbl 1289.65064, MR 3083519, 10.1007/s10492-013-0018-2 |
Reference:
|
[7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations.Numer. Math. 88 (2001), 559-579. MR 1835471, 10.1007/s211-001-8015-y |
Reference:
|
[8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112 |
Reference:
|
[9] Vaněk, P., Mandel, J., Brezina, R.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511 |
. |