Previous |  Up |  Next

Article

Title: Improved convergence bounds for smoothed aggregation method: linear dependence of the convergence rate on the number of levels (English)
Author: Brousek, Jan
Author: Fraňková, Pavla
Author: Vaněk, Petr
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 829-845
Summary lang: English
.
Category: math
.
Summary: The smoothed aggregation method has became a widely used tool for solving the linear systems arising by the discretization of elliptic partial differential equations and their singular perturbations. The smoothed aggregation method is an algebraic multigrid technique where the prolongators are constructed in two steps. First, the tentative prolongator is constructed by the aggregation (or, the generalized aggregation) method. Then, the range of the tentative prolongator is smoothed by a sparse linear prolongator smoother. The tentative prolongator is responsible for the approximation, while the prolongator smoother enforces the smoothness of the coarse-level basis functions. (English)
Keyword: smoothed aggregation
Keyword: improved convergence bound
MSC: 65F10
MSC: 65N12
MSC: 65N55
idZBL: Zbl 06644036
idMR: MR3556870
DOI: 10.1007/s10587-016-0295-5
.
Date available: 2016-10-01T15:26:59Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145874
.
Reference: [1] Bramble, J. H., Pasciak, J. E., Wang, J., Xu, J.: Convergence estimates for multigrid algorithms without regularity assumptions.Math. Comput. 57 (1991), 23-45. Zbl 0727.65101, MR 1079008, 10.1090/S0025-5718-1991-1079008-4
Reference: [2] Brezina, M., Vaněk, P., Vassilevski, P. S.: An improved convergence analysis of smoothed aggregation algebraic multigrid.Numer. Linear Algebra Appl. 19 (2012), 441-469. Zbl 1274.65315, MR 2911383, 10.1002/nla.775
Reference: [3] Fraňková, P., Mandel, J., Vaněk, P.: Model analysis of BPX preconditioner based on smoothed aggregations.Appl. Math., Praha 60 (2015), 219-250. MR 3419960, 10.1007/s10492-015-0093-7
Reference: [4] Vaněk, P.: Fast multigrid solver.Appl. Math., Praha 40 (1995), 1-20. Zbl 0824.65016, MR 1305645
Reference: [5] Vaněk, P.: Acceleration of convergence of a two-level algorithm by smoothing transfer operator.Appl. Math., Praha 37 (1992), 265-274. MR 1180605
Reference: [6] Vaněk, P., Brezina, M.: Nearly optimal convergence result for multigrid with aggressive coarsening and polynomial smoothing.Appl. Math., Praha 58 (2013), 369-388. Zbl 1289.65064, MR 3083519, 10.1007/s10492-013-0018-2
Reference: [7] Vaněk, P., Brezina, M., Mandel, J.: Convergence of algebraic multigrid based on smoothed aggregations.Numer. Math. 88 (2001), 559-579. MR 1835471, 10.1007/s211-001-8015-y
Reference: [8] Vaněk, P., Brezina, M., Tezaur, R.: Two-grid method for linear elasticity on unstructured meshes.SIAM J. Sci Comput. 21 (1999), 900-923. MR 1755171, 10.1137/S1064827596297112
Reference: [9] Vaněk, P., Mandel, J., Brezina, R.: Algebraic multigrid by smoothed aggregation for second and fourth order elliptic problems.Computing 56 (1996), 179-196. MR 1393006, 10.1007/BF02238511
.

Files

Files Size Format View
CzechMathJ_66-2016-3_20.pdf 243.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo