Previous |  Up |  Next

Article

Title: Rank decomposition in zero pattern matrix algebras (English)
Author: Bart, Harm
Author: Ehrhardt, Torsten
Author: Silbermann, Bernd
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 987-1005
Summary lang: English
.
Category: math
.
Summary: For a block upper triangular matrix, a necessary and sufficient condition has been given to let it be the sum of block upper rectangular matrices satisfying certain rank constraints; see H. Bart, A. P. M. Wagelmans (2000). The proof involves elements from integer programming and employs Farkas' lemma. The algebra of block upper triangular matrices can be viewed as a matrix algebra determined by a pattern of zeros. The present note is concerned with the question whether the decomposition result referred to above can be extended to other zero pattern matrix algebras. It is shown that such a generalization does indeed hold for certain digraphs determining the pattern of zeros. The digraphs in question can be characterized in terms of forests, i.e., disjoint unions of rooted trees. (English)
Keyword: block upper triangularity
Keyword: additive decomposition
Keyword: rank constraints
Keyword: zero pattern matrix algebra
Keyword: preorder
Keyword: partial order
Keyword: Hasse diagram
Keyword: rooted tree
Keyword: out-tree
Keyword: in-tree
MSC: 05C05
MSC: 05C50
MSC: 15A21
idZBL: Zbl 06644046
idMR: MR3556880
DOI: 10.1007/s10587-016-0305-7
.
Date available: 2016-10-01T15:43:26Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145884
.
Reference: [1] Bart, H., Ehrhardt, T., Silbermann, B.: Echelon type canonical forms in upper triangular matrix algebras.(to appear) in Oper. Theory, Adv. Appl.
Reference: [2] Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in zero pattern matrix algebras.Linear Algebra Appl. 498 (2016), 262-316. Zbl 1334.15039, MR 3478563
Reference: [3] Bart, H., Ehrhardt, T., Silbermann, B.: Sums of idempotents and logarithmic residues in matrix algebras.Operator Theory and Analysis. The M. A. Kaashoek Anniversary Volume (Bart, H. et al. eds.), Oper. Theory, Adv. Appl. 122 (2001), 139-168. Zbl 1047.46037, MR 1846056
Reference: [4] Bart, H., Ehrhardt, T., Silbermann, B.: Logarithmic residues in Banach algebras.Integral Equations Oper. Theory 19 (1994), 135-152. Zbl 0811.46043, MR 1274555, 10.1007/BF01206410
Reference: [5] Bart, H., Wagelmans, A. P. M.: An integer programming problem and rank decomposition of block upper triangular matrices.Linear Algebra Appl. 305 (2000), 107-129. Zbl 0951.15013, MR 1733797
Reference: [6] Birkhoff, G.: Lattice Theory.Colloquium Publications Vol. 25 American Mathematical Society, Providence (1967). Zbl 0153.02501, MR 0227053
Reference: [7] Davis, R. L.: Algebras defined by patterns of zeros.J. Comb. Theory 9 (1970), 257-260. Zbl 0211.06401, MR 0268208, 10.1016/S0021-9800(70)80064-3
Reference: [8] Fang, S.-C., Puthenpura, S.: Linear Optimization and Extensions: Theory and Algorithms.Prentice-Hall, Englewood Cliffs (1993).
Reference: [9] Harary, F.: Graph Theory.Addison-Wesley Series in Mathematics, Reading, Mass. Addison-Wesley Publishing Company (1969). Zbl 0196.27202, MR 0256911
Reference: [10] Laffey, T. J.: A structure theorem for some matrix algebras.Linear Algebra Appl. 162-164 (1992), 205-215. Zbl 0758.16010, MR 1148400
Reference: [11] Papadimitriou, C. H., Steiglitz, K.: Combinatorial Optimization: Algorithms and Complexity.Prentice-Hall, Englewood Cliffs (1982). Zbl 0503.90060, MR 0663728
Reference: [12] Schrijver, A.: Theory of Linear and Integer Programming.Wiley-Interscience Series in Discrete Mathematics John Wiley & Sons, Chichester (1986). Zbl 0665.90063, MR 0874114
Reference: [13] Szpilrajn, E.: Sur l'extension de l'ordre partiel.Fundamenta Mathematicae 16 (1930), 386-389 French available at\ http://matwbn.icm.edu.pl/ksiazki/fm/fm16/fm16125.pdf\kern-3sp. 10.4064/fm-16-1-386-389
.

Files

Files Size Format View
CzechMathJ_66-2016-3_30.pdf 269.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo