Previous |  Up |  Next

Article

Title: The real symmetric matrices of odd order with a P-set of maximum size (English)
Author: Du, Zhibin
Author: da Fonseca, Carlos M.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 1007-1026
Summary lang: English
.
Category: math
.
Summary: Suppose that $A$ is a real symmetric matrix of order $n$. Denote by $m_A(0)$ the nullity of $A$. For a nonempty subset $\alpha $ of $\{1,2,\ldots ,n\}$, let $A(\alpha )$ be the principal submatrix of $A$ obtained from $A$ by deleting the rows and columns indexed by $\alpha $. When $m_{A(\alpha )}(0)=m_{A}(0)+|\alpha |$, we call $\alpha $ a P-set of $A$. It is known that every P-set of $A$ contains at most $\lfloor {n}/{2} \rfloor $ elements. The graphs of even order for which one can find a matrix attaining this bound are now completely characterized. However, the odd case turned out to be more difficult to tackle. As a first step to the full characterization of these graphs of odd order, we establish some conditions for such graphs $G$ under which there is a real symmetric matrix $A$ whose graph is $G$ and contains a P-set of size ${(n-1)}/{2}$. (English)
Keyword: real symmetric matrix
Keyword: graph
Keyword: multiplicity of eigenvalues
Keyword: P-set
Keyword: P-vertices
MSC: 05C50
MSC: 15A18
idZBL: Zbl 06644047
idMR: MR3556881
DOI: 10.1007/s10587-016-0306-6
.
Date available: 2016-10-01T15:44:49Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145885
.
Reference: [1] An{\dj}elić, M., Erić, A., Fonseca, C. M. da: Nonsingular acyclic matrices with full number of P-vertices.Linear Multilinear Algebra 61 (2013), 49-57; erratum ibid. 61 (2013), 1159-1160. Zbl 1315.15006, MR 3003041, 10.1080/03081087.2013.794619
Reference: [2] An{\dj}elić, M., Fonseca, C. M. da, Mamede, R.: On the number of P-vertices of some graphs.Linear Algebra Appl. 434 (2011), 514-525. Zbl 1225.05078, MR 2741238, 10.1016/j.laa.2010.09.017
Reference: [3] Cvetković, D., Rowlinson, P., Simić, S.: A study of eigenspaces of graphs.Linear Algebra Appl. 182 (1993), 45-66. Zbl 0778.05057, MR 1207074, 10.1016/0024-3795(93)90491-6
Reference: [4] Du, Z.: The real symmetric matrices with a P-set of maximum size and their associated graphs.J. South China Norm. Univ., Nat. Sci. Ed. 48 (2016), 119-122. Zbl 1363.05159, MR 3469083
Reference: [5] Du, Z., Fonseca, C. M. da: The singular acyclic matrices of even order with a P-set of maximum size.(to appear) in Filomat.
Reference: [6] Du, Z., Fonseca, C. M. da: The acyclic matrices with a P-set of maximum size.Linear Algebra Appl. 468 (2015), 27-37. Zbl 1307.15012, MR 3293238
Reference: [7] Du, Z., Fonseca, C. M. da: The singular acyclic matrices with the second largest number of P-vertices.Linear Multilinear Algebra 63 (2015), 2103-2120. Zbl 1334.15026, MR 3378019, 10.1080/03081087.2014.975225
Reference: [8] Du, Z., Fonseca, C. M. da: Nonsingular acyclic matrices with an extremal number of P-vertices.Linear Algebra Appl. 442 (2014), 2-19. Zbl 1282.15028, MR 3134347
Reference: [9] Du, Z., Fonseca, C. M. da: The singular acyclic matrices with maximal number of P-vertices.Linear Algebra Appl. 438 (2013), 2274-2279. Zbl 1258.05024, MR 3005289
Reference: [10] Erić, A., Fonseca, C. M. da: The maximum number of P-vertices of some nonsingular double star matrices.Discrete Math. 313 (2013), 2192-2194. Zbl 1281.05091, MR 3084262, 10.1016/j.disc.2013.05.018
Reference: [11] Fernandes, R., Cruz, H. F. da: Sets of Parter vertices which are Parter sets.Linear Algebra Appl. 448 (2014), 37-54. Zbl 1286.15008, MR 3182972
Reference: [12] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290
Reference: [13] Johnson, C. R., Duarte, A. Leal, Saiago, C. M.: The Parter-Wiener theorem: Refinement and generalization.SIAM J. Matrix Anal. Appl. 25 (2003), 352-361. MR 2047422, 10.1137/S0895479801393320
Reference: [14] Johnson, C. R., Sutton, B. D.: Hermitian matrices, eigenvalue multiplicities, and eigenvector components.SIAM J. Matrix Anal. Appl. 26 (2004), 390-399. Zbl 1083.15015, MR 2124154, 10.1137/S0895479802413649
Reference: [15] Kim, I.-J., Shader, B. L.: Non-singular acyclic matrices.Linear Multilinear Algebra 57 (2009), 399-407. Zbl 1168.15021, MR 2522851, 10.1080/03081080701823286
Reference: [16] Kim, I.-J., Shader, B. L.: On Fiedler- and Parter-vertices of acyclic matrices.Linear Algebra Appl. 428 (2008), 2601-2613. Zbl 1145.15011, MR 2416575, 10.1016/j.laa.2007.12.022
Reference: [17] Nelson, C., Shader, B.: All pairs suffice for a P-set.Linear Algebra Appl. 475 (2015), 114-118. Zbl 1312.15012, MR 3325221
Reference: [18] Nelson, C., Shader, B.: Maximal P-sets of matrices whose graph is a tree.Linear Algebra Appl. 485 (2015), 485-502. Zbl 1322.05092, MR 3394160
Reference: [19] Sciriha, I.: A characterization of singular graphs.Electron. J. Linear Algebra (electronic only) 16 (2007), 451-462. Zbl 1142.05344, MR 2365899
Reference: [20] Sciriha, I.: On the construction of graphs of nullity one.Discrete Math. 181 (1998), 193-211. Zbl 0901.05069, MR 1600771, 10.1016/S0012-365X(97)00036-8
.

Files

Files Size Format View
CzechMathJ_66-2016-3_31.pdf 269.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo