Previous |  Up |  Next

Article

Title: Quotient of spectral radius, (signless) Laplacian spectral radius and clique number of graphs (English)
Author: Das, Kinkar Ch.
Author: Liu, Muhuo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 1039-1048
Summary lang: English
.
Category: math
.
Summary: In this paper, the upper and lower bounds for the quotient of spectral radius (Laplacian spectral radius, signless Laplacian spectral radius) and the clique number together with the corresponding extremal graphs in the class of connected graphs with $n$ vertices and clique number $\omega $ $(2\leq \omega \leq n)$ are determined. As a consequence of our results, two conjectures given in Aouchiche (2006) and Hansen (2010) are proved. (English)
Keyword: spectral radius
Keyword: (signless) Laplacian spectral radius
Keyword: clique number
MSC: 05C50
MSC: 05C75
idZBL: Zbl 06644049
idMR: MR3556883
DOI: 10.1007/s10587-016-0308-4
.
Date available: 2016-10-01T15:47:04Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145887
.
Reference: [1] Aouchiche, M.: Comparaison Automatise d'Invariants en Théorie des Graphes.PhD Thesis. École Polytechnique de Montréal (2006), French. MR 2709332
Reference: [2] Bruardi, R. A., Hoffman, A. J.: On the spectral radius of $(0,1)$-matrices.Linear Algebra Appl. 65 (1985), 133-146. MR 0774347, 10.1016/0024-3795(85)90092-8
Reference: [3] Cai, G.-X., Fan, Y.-Z.: The signless Laplacian spectral radius of graphs with given chromatic number.Math. Appl. 22 (2009), 161-167. Zbl 1199.05210, MR 2847662
Reference: [4] Feng, L., Li, Q., Zhang, X.-D.: Spectral radii of graphs with given chromatic number.Appl. Math. Lett. 20 (2007), 158-162. Zbl 1109.05069, MR 2283904, 10.1016/j.aml.2005.11.030
Reference: [5] Guo, J.-M., Li, J., Shiu, W. C.: The smallest Laplacian spectral radius of graphs with a given clique number.Linear Algebra Appl. 437 (2012), 1109-1122. Zbl 1244.05143, MR 2926159
Reference: [6] Hansen, P., Lucas, C.: Bounds and conjectures for the signless Laplacian index of graphs.Linear Algebra Appl. 432 (2010), 3319-3336. Zbl 1214.05079, MR 2639286, 10.1016/j.laa.2010.01.027
Reference: [7] Hansen, P., Lucas, C.: An inequality for the signless Laplacian index of a graph using the chromatic number.Graph Theory Notes N. Y. 57 (2009), 39-42. MR 2666279
Reference: [8] He, B., Jin, Y.-L., Zhang, X.-D.: Sharp bounds for the signless Laplacian spectral radius in terms of clique number.Linear Algebra Appl. 438 (2013), 3851-3861. Zbl 1282.05119, MR 3034503
Reference: [9] Hoffman, A. J., Smith, J. H.: On the spectral radii of topologically equivalent graphs.Recent Adv. Graph Theory, Proc. Symp. Prague 1974 Academia, Praha (1975), 273-281. Zbl 0327.05125, MR 0404028
Reference: [10] Liu, J., Liu, B.: The maximum clique and the signless Laplacian eigenvalues.Czech. Math. J. 58 (2008), 1233-1240. Zbl 1174.05079, MR 2471179, 10.1007/s10587-008-0082-z
Reference: [11] Liu, M., Tan, X., Liu, B.: The (signless) Laplacian spectral radius of unicyclic and bicyclic graphs with $n$ vertices and $k$ pendant vertices.Czech. Math. J. 60 (2010), 849-867. Zbl 1224.05311, MR 2672419, 10.1007/s10587-010-0053-z
Reference: [12] Merris, R.: Laplacian matrices of graphs: A survey.Linear Algebra Appl. 197-198 (1994), 143-176. Zbl 0802.05053, MR 1275613
Reference: [13] Nikiforov, V.: Bounds on graph eigenvalues II.Linear Algebra Appl. 427 (2007), 183-189. Zbl 1128.05035, MR 2351351
Reference: [14] Stevanović, D., Hansen, P.: The minimum spectral radius of graphs with a given clique number.Electron. J. Linear Algebra (electronic only) 17 (2008), 110-117. Zbl 1148.05306, MR 2390363
Reference: [15] Zhang, J.-M., Huang, T.-Z., Guo, J.-M.: The smallest signless Laplacian spectral radius of graphs with a given clique number.Linear Algebra Appl. 439 (2013), 2562-2576. Zbl 1282.05164, MR 3095669
.

Files

Files Size Format View
CzechMathJ_66-2016-3_33.pdf 190.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo