Previous |  Up |  Next

Article

Title: Lower bounds for the largest eigenvalue of the gcd matrix on $\{1,2,\dots ,n\}$ (English)
Author: Merikoski, Jorma K.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 3
Year: 2016
Pages: 1027-1038
Summary lang: English
.
Category: math
.
Summary: Consider the $n\times n$ matrix with $(i,j)$'th entry $\gcd {(i,j)}$. Its largest eigenvalue $\lambda _n$ and sum of entries $s_n$ satisfy $\lambda _n>s_n/n$. Because $s_n$ cannot be expressed algebraically as a function of $n$, we underestimate it in several ways. In examples, we compare the bounds so obtained with one another and with a bound from S. Hong, R. Loewy (2004). We also conjecture that $\lambda _n>6\pi ^{-2}n\log {n}$ for all $n$. If $n$ is large enough, this follows from F. Balatoni (1969). (English)
Keyword: eigenvalue bounds
Keyword: greatest common divisor matrix
MSC: 11A05
MSC: 15A42
MSC: 15B36
idZBL: Zbl 06644048
idMR: MR3556882
DOI: 10.1007/s10587-016-0307-5
.
Date available: 2016-10-01T15:45:42Z
Last updated: 2023-10-28
Stable URL: http://hdl.handle.net/10338.dmlcz/145886
.
Reference: [1] Altınışık, E., Keskin, A., Yıldız, M., Demirbüken, M.: On a conjecture of Ilmonen, Haukkanen and Merikoski concerning the smallest eigenvalues of certain GCD related matrices.Linear Algebra Appl. 493 (2016), 1-13. Zbl 1334.15079, MR 3452722
Reference: [2] Balatoni, F.: On the eigenvalues of the matrix of the Smith determinant.Mat. Lapok 20 (1969), 397-403 Hungarian. Zbl 0213.32303, MR 0291186
Reference: [3] Beslin, S., Ligh, S.: Greatest common divisor matrices.Linear Algebra Appl. 118 (1989), 69-76. Zbl 0672.15005, MR 0995366
Reference: [4] Hong, S., Loewy, R.: Asymptotic behavior of eigenvalues of greatest common divisor matrices.Glasg. Math. J. 46 (2004), 551-569. Zbl 1083.11021, MR 2094810, 10.1017/S0017089504001995
Reference: [5] Horn, R. A., Johnson, C. R.: Matrix Analysis.Cambridge University Press, Cambridge (2013). Zbl 1267.15001, MR 2978290
Reference: [6] Mitrinović, D. S., Sándor, J., Crstici, B.: Handbook of Number Theory.Mathematics and Its Applications 351 Kluwer Academic Publishers, Dordrecht (1995). Zbl 0862.11001, MR 1374329
Reference: [7] Smith, H. J. S.: On the value of a certain arithmetical determinant.Proc. L. M. S. 7 208-213 (1875). MR 1575630
Reference: [8] Tóth, L.: A survey of gcd-sum functions.J. Integer Seq. (electronic only) 13 (2010), Article ID 10.8.1, 23 pages. Zbl 1206.11118, MR 2718232
Reference: [9] Yaglom, A. M., Yaglom, I. M.: Non-elementary Problems in an Elementary Exposition.Gosudarstv. Izdat. Tehn.-Teor. Lit., Moskva (1954), Russian. MR 0070671
Reference: [10] Weisstein, E. W.: Faulhaber's Formula.From Mathworld---A Wolfram Web Resource, http://mathworld.wolfram.com/FaulhabersFormula.html.
.

Files

Files Size Format View
CzechMathJ_66-2016-3_32.pdf 194.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo