Previous |  Up |  Next

Article

Title: Augmentation quotients for Burnside rings of generalized dihedral groups (English)
Author: Chang, Shan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 4
Year: 2016
Pages: 1165-1175
Summary lang: English
.
Category: math
.
Summary: Let $H$ be a finite abelian group of odd order, $\mathcal {D}$ be its generalized dihedral group, i.e., the semidirect product of $C_2$ acting on $H$ by inverting elements, where $C_2$ is the cyclic group of order two. Let $\Omega (\mathcal {D})$ be the Burnside ring of $\mathcal {D}$, $\Delta (\mathcal {D})$ be the augmentation ideal of $\Omega (\mathcal {D})$. Denote by $\Delta ^n(\mathcal {D})$ and $Q_n(\mathcal {D})$ the $n$th power of $\Delta (\mathcal {D})$ and the $n$th consecutive quotient group $\Delta ^n(\mathcal {D})/\Delta ^{n+1}(\mathcal {D})$, respectively. This paper provides an explicit $\mathbb {Z}$-basis for $\Delta ^n(\mathcal {D})$ and determines the isomorphism class of $Q_n(\mathcal {D})$ for each positive integer $n$. (English)
Keyword: generalized dihedral group
Keyword: Burnside ring
Keyword: augmentation ideal
Keyword: augmentation quotient
MSC: 16S34
MSC: 20C05
idZBL: Zbl 06674868
idMR: MR3572929
DOI: 10.1007/s10587-016-0316-4
.
Date available: 2016-11-26T20:56:57Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145925
.
Reference: [1] Bak, A., Tang, G.: Solution to the presentation problem for powers of the augmentation ideal of torsion free and torsion Abelian groups.Adv. Math. 189 (2004), 1-37. Zbl 1068.16032, MR 2093478, 10.1016/j.aim.2003.11.002
Reference: [2] Chang, S.: Augmentation quotients for complex representation rings of point groups.J. Anhui Univ., Nat. Sci. 38 (2014), 13-19 Chinese. English summary. Zbl 1324.20002, MR 3363485
Reference: [3] Chang, S.: Augmentation quotients for complex representation rings of generalized quaternion groups.Chin. Ann. Math., Ser. B. 37 (2016), 571-584. Zbl 1351.20003, MR 3516112, 10.1007/s11401-016-1017-x
Reference: [4] Chang, S., Chen, H., Tang, G.: Augmentation quotients for complex representation rings of dihedral groups.Front. Math. China 7 (2012), 1-18. Zbl 1269.20001, MR 2876895, 10.1007/s11464-011-0162-5
Reference: [5] Chang, S., Tang, G.: A basis for augmentation quotients of finite Abelian groups.J. Algebra 327 (2011), 466-488. Zbl 1232.20006, MR 2746045, 10.1016/j.jalgebra.2010.08.020
Reference: [6] Magurn, B. A.: An Algebraic Introduction to $K$-Theory.Encyclopedia of Mathematics and Its Applications 87 Cambridge University Press, Cambridge (2002). Zbl 1002.19001, MR 1906572
Reference: [7] Parmenter, M. M.: A basis for powers of the augmentation ideal.Algebra Colloq. 8 (2001), 121-128. Zbl 0979.16015, MR 1838512
Reference: [8] Tang, G.: Presenting powers of augmentation ideals of elementary $p$-groups.$K$-Theory 23 (2001), 31-39. Zbl 0990.16024, MR 1852453, 10.1023/A:1017572832381
Reference: [9] Tang, G.: On a problem of Karpilovsky.Algebra Colloq. 10 (2003), 11-16. Zbl 1034.20006, MR 1961501, 10.1007/s100110300002
Reference: [10] Tang, G.: Structure of augmentation quotients of finite homocyclic Abelian groups.Sci. China, Ser. A. 50 (2007), 1280-1288. Zbl 1143.20003, MR 2370615, 10.1007/s11425-007-0112-6
Reference: [11] Wu, H., Tang, G. P.: Structure of powers of the augmentation ideal and their consecutive quotients for the Burnside ring of a finite abelian group.Adv. Math. (China) 36 (2007), 627-630 Chinese. English summary. MR 2380918
.

Files

Files Size Format View
CzechMathJ_66-2016-4_8.pdf 243.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo