Previous |  Up |  Next

Article

Title: SCAP-subalgebras of Lie algebras (English)
Author: Chehrazi, Sara
Author: Salemkar, Ali Reza
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 4
Year: 2016
Pages: 1177-1184
Summary lang: English
.
Category: math
.
Summary: A subalgebra $H$ of a finite dimensional Lie algebra $L$ is said to be a $\rm SCAP$-subalgebra if there is a chief series $0=L_0\subset L_1\subset \ldots \subset L_t=L$ of $L$ such that for every $i=1,2,\ldots ,t$, we have $H+L_i=H+L_{i-1}$ or $H\cap L_i=H\cap L_{i-1}$. This is analogous to the concept of $\rm SCAP$-subgroup, which has been studied by a number of authors. In this article, we investigate the connection between the structure of a Lie algebra and its $\rm SCAP$-subalgebras and give some sufficient conditions for a Lie algebra to be solvable or supersolvable. (English)
Keyword: Lie algebra
Keyword: $\rm SCAP$-subalgebra
Keyword: chief series
Keyword: solvable
Keyword: supersolvable
MSC: 17B05
MSC: 17B30
MSC: 17B50
idZBL: Zbl 06674869
idMR: MR3572930
DOI: 10.1007/s10587-016-0317-3
.
Date available: 2016-11-26T20:58:47Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145926
.
Reference: [1] Ballester-Bolinches, A., Ezquerro, L. M., Skiba, A. N.: On second maximal subgroups of Sylow subgroups of finite groups.J. Pure Appl. Algebra 215 (2011), 705-714. Zbl 1223.20012, MR 2738383, 10.1016/j.jpaa.2010.06.020
Reference: [2] Barnes, D. W.: On Cartan subalgebras of Lie algebras.Math. Z. 101 (1967), 350-355. Zbl 0166.04103, MR 0220785, 10.1007/BF01109800
Reference: [3] Barnes, D. W.: On the cohomology of soluble Lie algebras.Math. Z. 101 (1967), 343-349. Zbl 0166.04102, MR 0220784, 10.1007/BF01109799
Reference: [4] Borel, A., Mostow, G. D.: On semi-simple automorphisms of Lie algebras.Ann. Math. (2) 61 (1955), 389-405. Zbl 0066.02401, MR 0068531, 10.2307/1969807
Reference: [5] Fan, Y., Guo, X. Y., Shum, K. P.: Remarks on two generalizations of normality of subgroups.Chin. Ann. Math. Ser. A 27 (2006), 169-176. Zbl 1109.20017, MR 2239430
Reference: [6] Graaf, W. A.: Lie Algebras: Theory and Algorithms.North-Holland Mathematical Library 56 North-Holland, Amsterdam (2000). Zbl 1122.17300, MR 1743970
Reference: [7] Guo, X., Wang, J., Shum, K. P.: On semi-cover-avoiding maximal subgroups and solvability of finite groups.Comm. Algebra 34 (2006), 3235-3244. Zbl 1106.20013, MR 2252668, 10.1080/00927870600778381
Reference: [8] Hallahan, C. B., Overbeck, J.: Cartan subalgebras of meta-nilpotent Lie algebras.Math. Z. 116 (1970), 215-217. Zbl 0202.04102, MR 0277580, 10.1007/BF01110075
Reference: [9] Li, Y., Miao, L., Wang, Y.: On semi cover-avoiding maximal subgroups of Sylow subgroups of finite groups.Commun. Algebra 37 (2009), 1160-1169. Zbl 1175.20015, MR 2510976, 10.1080/00927870802465837
Reference: [10] Salemkar, A. R., Chehrazi, S., Tayanloo, F.: Characterizations for supersolvable Lie algebras.Commun. Algebra 41 (2013), 2310-2316. Zbl 1307.17017, MR 3225276, 10.1080/00927872.2012.658482
Reference: [11] Stitzinger, E. L.: On the Frattini subalgebra of a Lie algebra.J. Lond. Math. Soc. 2 (1970), 429-438. Zbl 0201.03603, MR 0263885, 10.1112/jlms/2.Part_3.429
Reference: [12] Stitzinger, E. L.: Covering-avoidance for saturated formations of solvable Lie algebras.Math. Z. 124 (1972), 237-249. Zbl 0215.38601, MR 0297829, 10.1007/BF01110802
Reference: [13] Towers, D.: Lie algebras all of whose maximal subalgebras have codimension one.Proc. Edinb. Math. Soc. (2) 24 (1981), 217-219. Zbl 0466.17007, MR 0633723, 10.1017/S0013091500016540
Reference: [14] Towers, D. A.: c-ideals of Lie algebras.Commun. Algebra 37 (2009), 4366-4373. Zbl 1239.17006, MR 2588856, 10.1080/00927870902829023
Reference: [15] Towers, D. A.: Subalgebras that cover or avoid chief factors of Lie algebras.Proc. Am. Math. Soc. 143 (2015), 3377-3385. MR 3348780, 10.1090/S0002-9939-2015-12533-6
.

Files

Files Size Format View
CzechMathJ_66-2016-4_9.pdf 239.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo