Previous |  Up |  Next

Article

Title: On dicyclic groups as inner mapping groups of finite loops (English)
Author: Leppälä, Emma
Author: Niemenmaa, Markku
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 549-553
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a finite group with a dicyclic subgroup $H$. We show that if there exist $H$-connected transversals in $G$, then $G$ is a solvable group. We apply this result to loop theory and show that if the inner mapping group $I(Q)$ of a finite loop $Q$ is dicyclic, then $Q$ is a solvable loop. We also discuss a more general solvability criterion in the case where $I(Q)$ is a certain type of a direct product. (English)
Keyword: solvable loop
Keyword: inner mapping group
Keyword: dicyclic group
MSC: 20D10
MSC: 20N05
idZBL: Zbl 06674896
idMR: MR3583306
DOI: 10.14712/1213-7243.2015.180
.
Date available: 2017-01-09T22:19:45Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145948
.
Reference: [1] Carr J.G.: A solubility criterion for factorized groups.Arch. Math. 27 (1976), 225–231. MR 0417288, 10.1007/BF01224664
Reference: [2] Drápal A.: Orbits of inner mapping groups.Monatsh. Math. 134 (2002), 191–206. MR 1883500, 10.1007/s605-002-8256-2
Reference: [3] Huppert B.: Endliche Gruppen I.Springer, Berlin-Heidelberg, 1967. Zbl 0412.20002, MR 0224703
Reference: [4] Leppälä E., Niemenmaa M.: On finite loops whose inner mapping groups are direct products of dihedral groups and abelian groups.Quasigroups Related Systems 20 (2012), no. 2, 257–260. Zbl 1273.20073, MR 3232747
Reference: [5] Leppälä E., Niemenmaa M.: On finite commutative loops which are centrally nilpotent.Comment. Math. Univ. Carolin. 56 (2015), no. 2, 139–143. Zbl 1339.20064, MR 3338728
Reference: [6] Mazur M.: Connected transversals to nilpotent groups.J. Group Theory 10 (2007), 195–203. Zbl 1150.20010, MR 2302614, 10.1515/JGT.2007.015
Reference: [7] Niemenmaa M.: Finite loops with dihedral inner mapping groups are solvable.J. Algebra 273 (2004), 288–294. Zbl 1047.20051, MR 2032461, 10.1016/j.jalgebra.2002.09.001
Reference: [8] Niemenmaa M., Kepka T.: On multiplication groups of loops.J. Algebra 135 (1990), 112–122. Zbl 0706.20046, MR 1076080, 10.1016/0021-8693(90)90152-E
Reference: [9] Vesanen A.: Solvable loops and groups.J. Algebra 180 (1996), 862–876. MR 1379214, 10.1006/jabr.1996.0098
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_8.pdf 221.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo