Previous |  Up |  Next

Article

Title: Isotopy invariant quasigroup identities (English)
Author: Krapež, Aleksandar
Author: Marinković, Bojan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 537-547
Summary lang: English
.
Category: math
.
Summary: According to S. Krstić, there are only four quadratic varieties which are closed under isotopy. We give a simple procedure generating quadratic identities and deciding which of the four varieties they define. There are about 37000 such identities with up to five variables. (English)
Keyword: quasigroup
Keyword: $3$-sorted quasigroup
Keyword: homotopy
Keyword: isotopy
Keyword: quadratic identity
Keyword: gemini identity
Keyword: coherent identity
Keyword: variety closed under isotopy (homotopy)
MSC: 03C40
MSC: 08A68
MSC: 08B99
MSC: 20M05
idZBL: Zbl 06674895
idMR: MR3583305
DOI: 10.14712/1213-7243.2015.179
.
Date available: 2017-01-09T22:19:04Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145946
.
Reference: [1] Belousov V.D.: Balanced identities in quasigroups.Mat. Sbornik 70 (112) (1966), 55–97 (Russian). Zbl 0199.05203, MR 0202898
Reference: [2] Belousov V.D.: Algebraic Nets and Quasigroups.Ştiinca, Kishinev, 1971 (Russian).
Reference: [3] Belyavskaya G.B.: Parastrophically equivalent identities characterizing quasigroups isotopic to abelian groups.Quasigroups Related Systems 22 (2014), no. 1, 19–32. Zbl 1303.20068, MR 3266749
Reference: [4] Birkhoff G., Lipson J.D.: Heterogeneous algebras.J. Combinatorial Theory 8 (1970), 115–133. Zbl 0211.02003, MR 0250887, 10.1016/S0021-9800(70)80014-X
Reference: [5] Brožíková E.: On universal quasigroup identities.Math. Bohem. 117 (1992), no. 1, 20–32. Zbl 0771.20023, MR 1154051
Reference: [6] Drápal A.: On multiplication groups of relatively free quasigroups isotopic to abelian groups.Czechoslovak Math. J. 55(130) (2005), 61–87. Zbl 1081.20078, MR 2121656, 10.1007/s10587-005-0004-2
Reference: [7] Falconer E.: Isotopy invariants in quasigroups.Trans. Amer. Math. Soc. 151 (1970), no. 2, 511–526. Zbl 0209.04701, MR 0272932, 10.1090/S0002-9947-1970-0272932-4
Reference: [8] Gvaramiya A.A.: Automata and quasigroups.Soobshch. Akad. Nauk Gruzin. SSR 114 (1984), no. 3, 481–484 (Russian). Zbl 0566.68052, MR 0782270
Reference: [9] Gvaramiya A.A.: Quasivarieties of automata. Connections with quasigroups.Sibirsk. Mat. Zh. 26 (1985), no. 3, 11–30 (Russian); http://dx.doi.org/10.1007/BF00968618; English translation: Siberian Math. J. 26 (1985), 315–331, DOI: 10.1007/BF00968618. Zbl 0622.68050, MR 0792051, 10.1007/BF00968618
Reference: [10] Gvaramiya A.A.: Quasigroup classes that are invariant under isotopy, and abstract classes of invertible automata.Dokl. Akad. Nauk SSSR 282 (1985), no. 5, 1047–1051 (Russian); English translation: Soviet. Math. Dokl. 31 (1985), 545–549. MR 0796940
Reference: [11] Gvaramiya A.A.: Category of quasigroups with homotopies.C.R. Acad. Bulgare Sci. 38 (1985), no. 6, 663–666. Zbl 0574.20057, MR 0805437
Reference: [12] Gvaramiya A.A., Plotkin B.I.: The homotopies of quasigroups and universal algebras.in A. Romanowska, J.D.H. Smith (eds.), Universal Algebra and Quasigroup Theory (Jadwisin, 1989), Res. Expo. Math., 19, Heldermann, Berlin, 1992, pp. 89–99. Zbl 0818.20088, MR 1191228
Reference: [13] Krapež A., Taylor M.A.: Gemini functional equations on quasigroups.Publ. Math. Debrecen 47 (1995), no. 3–4, 281-292. Zbl 0859.39014, MR 1362290
Reference: [14] Krstić S.: Quadratic quasigroup identities.PhD thesis (Serbocroatian), University of Belgrade, 1985, http//elibrary.matf.bg.ac.rs/handle/123456789/182/phdSavaKrstic.pdf, (accessed May 5, 2015).
Reference: [15] Krstić S.: On quasigroup varieties closed under isotopies.Publ. Inst. Math. (Beograd) (N.S.) 39(53) (1986), 89–95. MR 0869181
Reference: [16] Manzano M.: Extensions of First Order Logic.Cambridge Tracts in Theoretical Computer Science, 19, Cambridge University Press, Cambridge, New York, 2005. Zbl 0848.03001, MR 1386188
Reference: [17] Milić S.: On GD–groupoids with applications to $n$–ary quasigroups.Publ. Inst. Math. (Beograd) (N.S.) 13(27) (1972), 65–76. Zbl 0252.20056, MR 0335669
Reference: [18] Petrescu A.: Certain questions of the theory of homotopy of universal algebras.in Contributions to universal algebra (Colloq. Math. Soc. Janos Boylai Vol. 17), North Holland, Amsterdam, 1977, pp. 341–355. Zbl 0367.08002, MR 0472641
Reference: [19] Satyabhama V.: Generalized distributivity equation on GD-groupoids.Mat. Vesnik 29 (1977), no. 1, 137–146. MR 0463343
Reference: [20] Shahbazpour Kh.: An hyperidentity concerning the quasigroup identities isotopy closure to abelian group.Austral. J. Basic Appl. Sci. 3(4), (2009).
Reference: [21] Sioson F.M.: On generalized algebras.Portugal. Math. 25 (1966), 67–90. Zbl 0166.01004, MR 0210646
Reference: [22] Sokhatskii F.N.: On isotopes of groups II.Ukrain. Mat. Zh. 47 (1995), no. 12, 1692–1703 (Ukrainian); English translation: Ukrainian Math. J. 47 (1995), no. 12, 1935–1948. MR 1389002
Reference: [23] Stojaković Z.: Generalized entropy on GD–groupoids with application to quasigroups of various arities.Mat. Vesnik 24 (1972), no. 1, 159–166.
Reference: [24] Voutsadakis G.: Categorical models and quasigroup homotopies.Theory Appl. Categ. 11 (2003), no. 1, 1–14. Zbl 1050.20047, MR 1988069, 10.1023/A:1023055207145
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_7.pdf 266.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo