Previous |  Up |  Next

Article

Title: $0$-ideals in $0$-distributive posets (English)
Author: Mokbel, Khalid A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 141
Issue: 4
Year: 2016
Pages: 509-517
Summary lang: English
.
Category: math
.
Summary: The concept of a $0$-ideal in \mbox {$0$-distributive} posets is introduced. Several properties of $0$-ideals in $0$-distributive posets are established. Further, the interrelationships between $0$-ideals and \mbox {$\alpha $-ideals} in \mbox {$0$-distributive} posets are investigated. Moreover, a characterization of prime ideals to be $0$-ideals in $0$-distributive posets is obtained in terms of non-dense ideals. It is shown that every $0$-ideal of a $0$-distributive meet semilattice is semiprime. Several counterexamples are discussed. (English)
Keyword: $0$-distributive poset
Keyword: $0$-ideal
Keyword: $\alpha $-ideal
Keyword: prime ideal
Keyword: semiprime ideal
Keyword: dense ideal
MSC: 06A06
MSC: 06A75
idZBL: Zbl 06674860
idMR: MR3576797
DOI: 10.21136/MB.2016.0028-14
.
Date available: 2017-01-03T15:19:11Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/145957
.
Reference: [1] Cornish, W. H.: Annulets and $\alpha$-ideals in a distributive lattice.J. Aust. Math. Soc. 15 (1973), 70-77. Zbl 0274.06008, MR 0344170, 10.1017/S1446788700012775
Reference: [2] Cornish, W. H.: $0$-ideals, congruences, and sheaf representations of distributive lattices.Rev. Roum. Math. Pures Appl. 22 (1977), 1059-1067. Zbl 0382.06011, MR 0460202
Reference: [3] Grätzer, G.: General Lattice Theory.Birkhäuser, Basel (1998). MR 1670580
Reference: [4] Halaš, R.: Characterization of distributive sets by generalized annihilators.Arch. Math., Brno 30 (1994), 25-27. MR 1282110
Reference: [5] Halaš, R., Rachůnek, R. J.: Polars and prime ideals in ordered sets.Discuss. Math., Algebra Stoch. Methods 15 (1995), 43-59. MR 1369627
Reference: [6] Jayaram, C.: $0$-ideals in semilattices.Math. Semin. Notes, Kobe Univ. 8 (1980), 309-319. MR 0601900
Reference: [7] Jayaram, C.: Quasicomplemented semilattices.Acta Math. Acad. Sci. Hung. 39 (1982), 39-47. Zbl 0516.06002, MR 0653670, 10.1007/BF01895211
Reference: [8] Joshi, V. V., Waphare, B. N.: Characterizations of $0$-distributive posets.Math. Bohem. 130 (2005), 73-80. Zbl 1112.06001, MR 2128360
Reference: [9] Kharat, V. S., Mokbel, K. A.: Primeness and semiprimeness in posets.Math. Bohem. 134 (2009), 19-30. Zbl 1212.06001, MR 2504684
Reference: [10] Mokbel, K. A.: $\alpha$-ideals in $0$-distributive posets.Math. Bohem. (2015), 140 319-328. Zbl 1349.06001, MR 3397260
.

Files

Files Size Format View
MathBohem_141-2016-4_8.pdf 242.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo